エッジ人工知能の夢と挑戦
この記事では、2 つの主要な質問に焦点を当てます。つまり、人工知能を「小型マシン」に実装する理論的根拠と、人工知能小型マシンを開発する際にどのような課題に直面するかです。
将来、人工知能の観点からは、空飛ぶ車やロボット執事が登場するはずです。私たちに反抗することを決意する知性を持ったロボットに遭遇することさえあるかもしれません。私たちはまだそこまで到達していませんが、人工知能 (AI) テクノロジーが私たちの世界に浸透していることは明らかです。
スマート音声アシスタントに何かを依頼するたびに、機械学習テクノロジーはまずユーザーが何を言ったかを把握し、ユーザーが何をしたいのかについて最善の決定を下そうとします。たとえば、ビデオ Web サイトや電子商取引プラットフォームが「好みの映画」や「必要と思われる製品」を推奨するたびに、複雑な機械学習アルゴリズムに基づいて、可能な限り説得力のある情報を提供します。これは明らかに過去のプロモーションよりも魅力的です。
誰もが自動運転車を持っているわけではありませんが、私たちはこの分野の発展と自律ナビゲーションがもたらす可能性を強く認識しています。
人工知能テクノロジーには大きな期待が寄せられています。それは、機械が周囲の世界に基づいて意思決定を行い、人間と同じように、あるいは人間よりも優れた方法で情報を処理できるようになるということです。しかし、上記の例を考えると、AI の可能性は「大型マシン」によってのみ実現可能であり、パワー、サイズ、コストの制約がないことがわかります。言い換えれば、それらは加熱し、有線で動作し、大きく、高価です。たとえば、Alexa や Netflix などの世界をリードする IT 大手は、ユーザーの意図を推測するためにクラウド内の電力を大量に消費する大規模なサーバー (データセンター) に依存しています。
自動運転車はバッテリーに依存する可能性が高いですが、バッテリーが車輪を回して操縦する必要があることを考えると、そのエネルギー容量は膨大です。これらは、最も高価な AI の決定と比較すると、莫大なエネルギー消費となります。
つまり、人工知能には大きな期待がある一方で、「小さな機械」は取り残されつつあるということです。小型のバッテリーで駆動されるデバイスや、コストとサイズの制約があるデバイスは、機械が見たり聞いたりできるというアイデアに参加できません。現在、これらの小さなマシンは単純な人工知能技術しか利用できず、おそらくキーワードをリッスンしたり、光電脈波計 (PPG) などの心拍数からの低次元信号を分析したりします。
もし小さな機械が見えたり聞こえたりできたらどうなるでしょうか?
しかし、小さな機械が見えたり聞こえたりすることに価値はあるのでしょうか?自動運転や自然言語処理などの技術を活用したドアホンカメラのような小型デバイスを想像するのは難しい人も多いかもしれません。それでも、単語認識、音声認識、画像分析など、それほど複雑ではなく処理集約度の低い AI 計算の機会は存在します。
- ドアベル カメラや消費者向けのセキュリティ カメラは、植物の動きなどの興味のないイベントをトリガーすることがよくあります。風によるもの、雲による劇的な光の変化、さらにはカメラの前を動く犬や猫など。これにより、誤警報が作動し、住宅所有者が重要なイベントを見逃し始める可能性があります。住宅所有者は、世界のさまざまな地域を旅行したり、睡眠中に、セキュリティカメラが日の出、雲、日没による照明の変化を頻繁に警告している可能性があります。より高性能なカメラは、人体の輪郭などの物体の変化をより正確に識別できるため、誤報による干渉を回避できます。
- ドア ロックやその他のアクセス ポイントは、顔認識や音声認識を使用して人間のアクセスを確認でき、多くの場合、キーや IC カードは必要ありません。
- 多くのカメラは、特定のイベントでトリガーしたいと考えています。たとえば、トレイルカメラは、特定の動物がフレーム内に現れたときにトリガーしたいかもしれませんし、セキュリティカメラは、フレーム内に人が現れたときにトリガーしたいかもしれません。ドアが開く音や足音などのノイズがあり、トリガーされますが、一部のカメラは音声コマンドなどでトリガーする必要がある場合があります。
- 豊富な語彙のコマンドは、多くのアプリケーションで役立ちます。 「Hey Alexa」や「Hey Siri」のソリューションはたくさんありますが、20 語以上の語彙について考え始めると、産業機器、ホーム オートメーション、調理家電、その他多くのデバイスで人々の語彙を簡素化することができます。コンピューター対話の使用。
これらの例は表面をなぞっただけです。これまで人間の介入が必要だった問題を小型マシンに見て、聞いて、解決してもらうというアイデアは強力であり、私たちは日々創造的な新しい使用例を見つけ続けています。
小型マシンに見たり聞いたりさせる際の課題は何ですか?
では、小型マシンにとって AI がそれほど価値があるのであれば、なぜ私たちはそれをもっと広く活用しないのでしょうか?答えはコンピューティング能力です。人工知能の推論は、ニューラル ネットワーク モデルの計算の結果です。ニューラル ネットワーク モデルは、脳が画像や音声を処理する方法の大まかな近似として考えてください。画像や音声を非常に小さな部分に分割し、それらの小さな部分が組み合わされたときにパターンを認識します。
現代の視覚の問題に対する主力モデルは、畳み込みニューラル ネットワーク (CNN) です。これらのモデルは画像分析に優れており、音声分析にも非常に役立ちます。課題は、そのようなモデルには数百万、または数十億の数学的計算が必要であることです。従来、これらのアプリケーションは、安価で低電力のマイクロコントローラー ソリューションを使用して実装することが困難でした。平均消費電力は低いかもしれませんが、CNN は計算に数秒かかることがあります。つまり、AI 推論はリアルタイムではないため、大量のバッテリー電力を消費します。
- これらの数学演算を必要な遅延内で実行できる、高価で高性能のプロセッサを購入してください。これらのプロセッサは大型であることが多く、ヒートシンクや同様の冷却コンポーネントなど、多数の外部コンポーネントが必要になります。ただし、AI 推論は非常に高速に実行されます。
- 実装できません。低電力マイクロコントローラー ソリューションは遅すぎて使用できませんが、高性能プロセッサーによるアプローチではコスト、サイズ、電力の予算が大幅に膨れ上がります。
- 必要なのは、CNN 計算のエネルギー消費を最小限に抑えるためにゼロから構築された組み込み人工知能ソリューションです。 AI 推論は、従来のマイクロコントローラーやプロセッサー ソリューションと比較して桁違いに実行する必要があり、エネルギー、量、コストを消費するメモリなどの外部コンポーネントの助けを必要としません。
以上がエッジ人工知能の夢と挑戦の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G
