ホームページ テクノロジー周辺機器 AI ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

Apr 09, 2023 pm 06:11 PM
テクノロジー オートパイロット

arXiv 論文「ST-P3: 時空間特徴学習によるエンドツーエンドのビジョンベースの自動運転」、7 月 22 日、上海交通大学、上海 AI 研究所、カリフォルニア大学サンディエゴ校、JD の著者。 com 北京研究所。

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

ST-P3 と呼ばれる、知覚、予測、計画タスクのためのより代表的な特徴のセットを同時に提供できる時空間特徴学習スキームを提案します。具体的には、BEV 変換を感知する前に 3 次元空間に幾何学的情報を保持する自己中心的調整累積手法が提案されており、著者は、将来の予測のために過去の動きの変化が考慮されるように二重経路モデルを設計しています。計画された視覚要素の認識を補うために、洗練ユニットが導入されました。ソース コード、モデル、プロトコルの詳細はオープン ソースhttps://github.com/OpenPerceptionX/ST-P3.

先駆的な LSS 手法は、マルチビュー カメラから遠近感特徴を抽出し、深さ推定を通じてそれらを 3D に引き上げ、BEV 空間に融合します。 2 つのビュー間の特徴変換。潜在深度予測が重要です。

2 次元の平面情報を 3 次元にアップグレードするには、追加の次元、つまり 3 次元の幾何学的自動運転タスクに適した深さが必要です。ほとんどのシーンにはビデオ ソースが割り当てられているため、特徴表現をさらに改善するには、時間情報をフレームワークに組み込むのが自然です。

図で説明されているST- P3全体的なフレームワーク: 具体的には、周囲のカメラ ビデオのセットが与えられると、それらをバックボーンに入力して、予備的な正面図の特徴を生成します。補助的な深度推定を実行して、2D フィーチャを 3D 空間に変換します。自己中心位置合わせ累積スキームは、まず過去のフィーチャを現在のビュー座標系に位置合わせします。その後、現在および過去のフィーチャが 3 次元空間に集約され、BEV 表現に変換する前に幾何学的情報が保存されます。一般的に使用される prediction 時間領域モデルに加えて、過去の動きの変化を説明する 2 番目のパスを構築することで、パフォーマンスがさらに向上します。このデュアルパス モデリングにより、将来のセマンティックな結果を推測するためのより強力な特徴表現が保証されます。軌道 計画 という最終目標を達成するために、ネットワークの初期機能の事前知識が統合されます。改良モジュールは、HD マップがない場合でも高レベルのコマンドを使用して最終的な軌道を生成するように設計されました。

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

図は、知覚の自己中心的調整蓄積法を示しています。 (a) 深度推定を利用して現在のタイムスタンプの特徴を 3D に引き上げ、位置合わせ後に BEV 特徴にマージします; (b-c) 前のフレームの 3D 特徴を現在のフレーム ビューと位置合わせし、過去および現在のすべての状態と融合します。特徴表現を強化します。

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

図に示されているのは、prediction に使用される 2 方向モデルです。 (i) 潜在コードは特徴マップからの分布です。 (ii iii) ロード a には、将来のマルチモダリティを示す不確実性分布が組み込まれていますが、パス b は過去の変化から学習し、パス a の情報を補うのに役立ちます。

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

#最終的な目標として、目標点に到達するための安全で快適な軌道を計画する必要があります。このモーション プランナーは、さまざまな軌道のセットをサンプリングし、学習されたコスト関数を最小化する軌道を選択します。ただし、ターゲット ポイントや信号機からの情報をタイム ドメイン モデルを通じて統合すると、追加の最適化手順が追加されます。

この図は、計画のための事前知識の統合と改良を示しています。全体のコスト図には 2 つのサブコストが含まれています。カメラ入力からのビジョンベースの情報を集約する将来予測機能を使用して、最小コストの軌道がさらに再定義されます。

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

大きな横加速度、ジャーク、または曲率を伴う軌道にペナルティを与えます。この軌道が効率的に目的地に到達し、前進が報われることを願っています。ただし、上記のコスト項目には、通常ルートマップで提供されるターゲット情報は含まれません。前進、左折、右折などの高レベルのコマンドを使用し、対応するコマンドのみに基づいて軌道を評価します。

さらに、SDV にとって信号機は、GRU ネットワークを通じて軌道を最適化するために不可欠です。隠れ状態はエンコーダ モジュールのフロント カメラ機能で初期化され、コスト項の各サンプル ポイントが入力として使用されます。

実験結果は次のとおりです:

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法

ST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法#

以上がST-P3: 自動運転のためのエンドツーエンドの時空間特徴学習ビジョン手法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

なぜ自動運転ではガウス スプラッティングが非常に人気があるのに、NeRF は放棄され始めているのでしょうか? なぜ自動運転ではガウス スプラッティングが非常に人気があるのに、NeRF は放棄され始めているのでしょうか? Jan 17, 2024 pm 02:57 PM

上記と著者の個人的な理解 3 次元ガウシアンプラッティング (3DGS) は、近年、明示的な放射線フィールドとコンピューター グラフィックスの分野で出現した革新的なテクノロジーです。この革新的な方法は、数百万の 3D ガウスを使用することを特徴とし、主に暗黙的な座標ベースのモデルを使用して空間座標をピクセル値にマッピングする神経放射線場 (NeRF) 方法とは大きく異なります。明示的なシーン表現と微分可能なレンダリング アルゴリズムにより、3DGS はリアルタイム レンダリング機能を保証するだけでなく、前例のないレベルの制御とシーン編集も導入します。これにより、3DGS は、次世代の 3D 再構築と表現にとって大きな変革をもたらす可能性のあるものとして位置付けられます。この目的を達成するために、私たちは 3DGS 分野における最新の開発と懸念について初めて体系的な概要を提供します。

自動運転シナリオにおけるロングテール問題を解決するにはどうすればよいでしょうか? 自動運転シナリオにおけるロングテール問題を解決するにはどうすればよいでしょうか? Jun 02, 2024 pm 02:44 PM

昨日の面接で、ロングテール関連の質問をしたかと聞かれたので、簡単にまとめてみようと思いました。自動運転のロングテール問題とは、自動運転車におけるエッジケース、つまり発生確率が低い考えられるシナリオを指します。認識されているロングテール問題は、現在、単一車両のインテリジェント自動運転車の運用設計領域を制限している主な理由の 1 つです。自動運転の基礎となるアーキテクチャとほとんどの技術的問題は解決されており、残りの 5% のロングテール問題が徐々に自動運転の開発を制限する鍵となってきています。これらの問題には、さまざまな断片的なシナリオ、極端な状況、予測不可能な人間の行動が含まれます。自動運転におけるエッジ シナリオの「ロング テール」とは、自動運転車 (AV) におけるエッジ ケースを指します。エッジ ケースは、発生確率が低い可能性のあるシナリオです。これらの珍しい出来事

カメラかライダーを選択しますか?堅牢な 3D オブジェクト検出の実現に関する最近のレビュー カメラかライダーを選択しますか?堅牢な 3D オブジェクト検出の実現に関する最近のレビュー Jan 26, 2024 am 11:18 AM

0.前面に書かれています&& 自動運転システムは、さまざまなセンサー (カメラ、ライダー、レーダーなど) を使用して周囲の環境を認識し、アルゴリズムとモデルを使用することにより、高度な知覚、意思決定、および制御テクノロジーに依存しているという個人的な理解リアルタイムの分析と意思決定に。これにより、車両は道路標識の認識、他の車両の検出と追跡、歩行者の行動の予測などを行うことで、安全な運行と複雑な交通環境への適応が可能となり、現在広く注目を集めており、将来の交通分野における重要な開発分野と考えられています。 。 1つ。しかし、自動運転を難しくしているのは、周囲で何が起こっているかを車に理解させる方法を見つけることです。これには、自動運転システムの 3 次元物体検出アルゴリズムが、周囲環境にある物体 (位置を含む) を正確に認識し、記述することができる必要があります。

Stable Diffusion 3 の論文がついに公開され、アーキテクチャの詳細が明らかになりましたが、Sora の再現に役立つでしょうか? Stable Diffusion 3 の論文がついに公開され、アーキテクチャの詳細が明らかになりましたが、Sora の再現に役立つでしょうか? Mar 06, 2024 pm 05:34 PM

StableDiffusion3 の論文がついに登場しました!このモデルは2週間前にリリースされ、Soraと同じDiT(DiffusionTransformer)アーキテクチャを採用しており、リリースされると大きな話題を呼びました。前バージョンと比較して、StableDiffusion3で生成される画像の品質が大幅に向上し、マルチテーマプロンプトに対応したほか、テキスト書き込み効果も向上し、文字化けが発生しなくなりました。 StabilityAI は、StableDiffusion3 はパラメータ サイズが 800M から 8B までの一連のモデルであると指摘しました。このパラメーター範囲は、モデルを多くのポータブル デバイス上で直接実行できることを意味し、AI の使用を大幅に削減します。

自動運転と軌道予測についてはこの記事を読めば十分です! 自動運転と軌道予測についてはこの記事を読めば十分です! Feb 28, 2024 pm 07:20 PM

自動運転では軌道予測が重要な役割を果たしており、自動運転軌道予測とは、車両の走行過程におけるさまざまなデータを分析し、将来の車両の走行軌跡を予測することを指します。自動運転のコアモジュールとして、軌道予測の品質は下流の計画制御にとって非常に重要です。軌道予測タスクには豊富な技術スタックがあり、自動運転の動的/静的知覚、高精度地図、車線境界線、ニューラル ネットワーク アーキテクチャ (CNN&GNN&Transformer) スキルなどに精通している必要があります。始めるのは非常に困難です。多くのファンは、できるだけ早く軌道予測を始めて、落とし穴を避けたいと考えています。今日は、軌道予測に関するよくある問題と入門的な学習方法を取り上げます。関連知識の紹介 1. プレビュー用紙は整っていますか? A: まずアンケートを見てください。

SIMPL: 自動運転向けのシンプルで効率的なマルチエージェント動作予測ベンチマーク SIMPL: 自動運転向けのシンプルで効率的なマルチエージェント動作予測ベンチマーク Feb 20, 2024 am 11:48 AM

原題: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving 論文リンク: https://arxiv.org/pdf/2402.02519.pdf コードリンク: https://github.com/HKUST-Aerial-Robotics/SIMPL 著者単位: 香港科学大学DJI 論文のアイデア: この論文は、自動運転車向けのシンプルで効率的な動作予測ベースライン (SIMPL) を提案しています。従来のエージェントセントとの比較

nuScenes の最新 SOTA | SparseAD: スパース クエリは効率的なエンドツーエンドの自動運転に役立ちます。 nuScenes の最新 SOTA | SparseAD: スパース クエリは効率的なエンドツーエンドの自動運転に役立ちます。 Apr 17, 2024 pm 06:22 PM

先頭と開始点に書かれている エンドツーエンドのパラダイムでは、統一されたフレームワークを使用して自動運転システムのマルチタスクを実現します。このパラダイムの単純さと明確さにも関わらず、サブタスクにおけるエンドツーエンドの自動運転手法のパフォーマンスは、依然としてシングルタスク手法に比べてはるかに遅れています。同時に、以前のエンドツーエンド手法で広く使用されていた高密度鳥瞰図 (BEV) 機能により、より多くのモダリティやタスクに拡張することが困難になります。ここでは、スパース検索中心のエンドツーエンド自動運転パラダイム (SparseAD) が提案されています。このパラダイムでは、スパース検索は、高密度の BEV 表現を使用せずに、空間、時間、タスクを含む運転シナリオ全体を完全に表します。具体的には、統合されたスパース アーキテクチャが、検出、追跡、オンライン マッピングなどのタスク認識のために設計されています。さらに、重い

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

See all articles