目次
医療における人工知能の適用に対する障壁
#人工知能を医療画像に統合する場合でも、深層学習技術を使用して臨床診断手順を操作する場合でも、高品質の医療データセットが成功の鍵となります。ヘルスケア向けの AI モデル開発における主要な障壁を特定しようとしたところ、倫理的および法的問題が AI 駆動型の機械学習モデルの開発における最大の障壁であることがわかりました。
人工知能システムを統合すると、質に影響を与えることなく医療効率を向上させることができ、患者はより優れた、より個別化されたケアを受けることができます。スマートで効率的な人工知能システムを使用することで、調査、評価、治療を簡素化し、改善することができます。ただし、AI を医療分野に導入することは、ユーザーフレンドリーであり、患者や医療従事者に価値を提供する必要があるため、困難です。
医療専門家は、医療システムの内部戦略的変更管理機能により、郡議会への AI システムの導入は困難になると指摘しています。難しい。地域レベルで人工知能システムとの戦略的協力を実装する能力を向上させるために、専門家は、使い慣れた構造とプロセスを備えたインフラストラクチャと合弁事業を確立する必要性を強調しました。組織全体の永続的な改善を達成するには、この行動を通じて組織の目標、目的、使命を達成する必要があります。
手術で体を開けずに体内を見ることができる画像技術は、医用画像技術 (MIT) と呼ばれます。臨床診断における人工知能の使用は、X 線写真、コンピューター断層撮影、磁気共鳴画像法、超音波画像法などの最も有望な用途のいくつかを実証しています。
概要
ホームページ テクノロジー周辺機器 AI 医療における人工知能の導入を成功させるための課題

医療における人工知能の導入を成功させるための課題

Apr 10, 2023 pm 04:41 PM
AI 医学

医療における人工知能の導入を成功させるための課題

人工知能 (AI) と機械学習 (ML) は、医療提供において新しいパラダイムを確立する可能性があるため、近年広く注目を集めています。機械学習は、医療提供の多くの側面を変革することになると言われており、そのテクノロジーを利用する最初の専門分野としては、放射線学と病理学が挙げられます。

今後数年間で、医用画像専門家は、定量的な画像特徴を検出、分類、セグメント化、抽出するための急速に拡大する AI 診断ツールキットにアクセスできるようになります。それは最終的には正確な医療データの解釈、診断プロセスの強化、臨床転帰の改善につながります。ディープラーニング (DL) やその他の人工知能手法の進歩により、精度と生産性が向上して臨床実践をサポートする効果が示されています。

医療における人工知能の適用に対する障壁

人工知能は、自動化された統合を通じて医療および診断プロセスの機能を強化できますが、まだいくつかの課題があります。注釈付きデータが不足しているため、深層学習アルゴリズムのトレーニングが非常に困難になります。さらに、ブラックボックスの性質により、深層学習アルゴリズムの結果が不透明になります。人工知能を医療ワークフローに組み込む際、臨床現場は大きな課題に直面しています。

医療現場での人工知能の導入を成功させるための主な課題は次のとおりです。

  • データ共有の倫理的および法的問題
  • 医療従事者と患者の操作訓練複雑な AI モデル
  • AI イノベーションを実践するための戦略的変更の管理
#1. AI 開発者が高品質のデータセットにアクセスすることを妨げる倫理的および法的問題

#人工知能を医療画像に統合する場合でも、深層学習技術を使用して臨床診断手順を操作する場合でも、高品質の医療データセットが成功の鍵となります。ヘルスケア向けの AI モデル開発における主要な障壁を特定しようとしたところ、倫理的および法的問題が AI 駆動型の機械学習モデルの開発における最大の障壁であることがわかりました。

患者の健康情報は非公開かつ機密であり、法律で保護されているため、医療提供者は厳格なプライバシーとデータ セキュリティ ポリシーを遵守する必要があります。ただし、これにより、医療従事者にはデータを第三者に提供しないという倫理的および法的義務が課せられます。これにより、AI 開発者が高品質のデータセットにアクセスして医療機械学習モデル用の AI トレーニング データを開発することができなくなります。

既存の法律の曖昧さと組織間のデータ共有に関連する課題に加えて、人工知能システムの設計と実装の責任と許容範囲について不確実性が生じ、法的および倫理的な問題が生じています。

2. 医療従事者と患者が複雑な AI モデルを使用できるようにトレーニングする

人工知能システムを統合すると、質に影響を与えることなく医療効率を向上させることができ、患者はより優れた、より個別化されたケアを受けることができます。スマートで効率的な人工知能システムを使用することで、調査、評価、治療を簡素化し、改善することができます。ただし、AI を医療分野に導入することは、ユーザーフレンドリーであり、患者や医療従事者に価値を提供する必要があるため、困難です。

人工知能システムは、使いやすく、ユーザーフレンドリーで、自己学習型である必要があり、広範な事前知識やトレーニングを必要としません。 AI システムは使いやすいことに加えて、時間を節約し、実行するために別のデジタル オペレーティング システムを必要としない必要があります。医療従事者が AI 駆動のマシンやアプリケーションを効果的に操作するには、AI モデルの特徴と機能がシンプルでなければなりません。

3. AI イノベーションを実践するための戦略的変更の管理

医療専門家は、医療システムの内部戦略的変更管理機能により、郡議会への AI システムの導入は困難になると指摘しています。難しい。地域レベルで人工知能システムとの戦略的協力を実装する能力を向上させるために、専門家は、使い慣れた構造とプロセスを備えたインフラストラクチャと合弁事業を確立する必要性を強調しました。組織全体の永続的な改善を達成するには、この行動を通じて組織の目標、目的、使命を達成する必要があります。

変化は複雑なプロセスであるため、医療専門家は組織がどのように変化を実装するかを部分的にしか決定できません。実装研究のための包括的フレームワーク (CFIR) では、「内部環境」で役割を果たす組織能力、環境、文化、リーダーシップに焦点を当てる必要があります。適切に機能する組織と提供システムを維持することは、医療実践にイノベーションを適用する能力の一部です。

データ アノテーションを通じて人工知能を医用画像に統合し、医療を強化する

手術で体を開けずに体内を見ることができる画像技術は、医用画像技術 (MIT) と呼ばれます。臨床診断における人工知能の使用は、X 線写真、コンピューター断層撮影、磁気共鳴画像法、超音波画像法などの最も有望な用途のいくつかを実証しています。

機械学習は、あらゆる段階で放射線科の患者エクスペリエンスを向上させます。医療画像における機械学習の応用は、当初、放射線科医の効率と生産性を向上させるための画像分析とツールの開発に焦点を当てていました。多くの場合、同じツールを使用することで、より正確な診断と治療計画が可能になったり、診断の見逃しが減少したりして、患者の転帰が改善されます。

人工知能と機械学習は、臨床上の意思決定を超えて放射線医学において幅広い役割を果たしており、最初の画像検査計画から診断とフォローアップの終了まで、画像プロセス全体を通じて患者エクスペリエンスを向上させるのに役立ちます。

医療システムのトレンドを見ると、機械学習の応用が診断や医療画像を超えて拡大していることがわかります。データ収集プロセスを強化し、あらゆる検査で最高の画質を確保し、画像部門が業務パフォーマンスを効率的に最大化できるように支援します。

概要

医療業界は人工知能による技術革新の新たな波の黎明期にあり、医療提供者は人工知能を臨床実践に統合するためのロードマップを作成する時期が来ています。 。世界人口が増加し続ける中、医療従事者は患者ケアを改善し、臨床ワークフローを変革できるテクノロジーに投資する必要があります。臨床プロセスに革命をもたらすことができるテクノロジーの中で、医療提供における人工知能の応用は間違いなく最前線にあります。

以上が医療における人工知能の導入を成功させるための課題の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 Jul 15, 2024 pm 12:21 PM

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

See all articles