グラフ埋め込みの概要: ノード、エッジ、グラフの埋め込み方法と Python の実装
グラフベースの機械学習は、近年大きく進歩しました。グラフベースの手法は、リンク予測、コミュニティ発見、ノード分類など、データ サイエンスにおける多くの一般的な問題に応用できます。問題を解決するには、問題を整理する方法と所有するデータに応じてさまざまな方法があります。この記事では、グラフベースの埋め込みアルゴリズムの概要を説明します。最後に、Python ライブラリ (node2vec など) を使用してグラフ上にさまざまな埋め込みを生成する方法も紹介します。
グラフの埋め込み
グラフレベルの埋め込みは一般的ではなく、各グラフを表す埋め込みベクトルの生成で構成されます。たとえば、複数のサブグラフを含む大きなグラフでは、対応する各サブグラフにグラフ構造を表す埋め込みベクトルがあります。分類問題は、グラフの埋め込みが役立つ一般的なアプリケーションです。この種の問題には、グラフを特定のカテゴリに分類することが含まれます。
Python の実装
Python コードを使用して、必要な次のライブラリを実装します
Pythnotallow=3.9 networkx>=2.5 pandas>=1.2.4 numpy>=1.20.1 node2vec>=0.4.4 karateclub>=1.3.3 matplotlib>=3.3.4
そうでない場合node2vec パッケージがインストールされている場合は、そのドキュメントを参照してください。 karateclub パッケージをインストールします。これも
ノードの埋め込み
import random import networkx as nx import matplotlib.pyplot as plt from node2vec import Node2Vec from node2vec.edges import HadamardEmbedder from karateclub import Graph2Vec plt.style.use("seaborn") # generate barbell network G = nx.barbell_graph( m1 = 13, m2 = 7 ) # node embeddings def run_n2v(G, dimensions=64, walk_length=80, num_walks=10, p=1, q=1, window=10): """ Given a graph G, this method will run the Node2Vec algorithm trained with the appropriate parameters passed in. Args: G (Graph) : The network you want to run node2vec on Returns: This method will return a model Example: G = np.barbell_graph(m1=5, m2=3) mdl = run_n2v(G) """ mdl = Node2Vec( G, dimensions=dimensions, walk_length=walk_length, num_walks=num_walks, p=p, q=q ) mdl = mdl.fit(window=window) return mdl mdl = run_n2v(G) # visualize node embeddings x_coord = [mdl.wv.get_vector(str(x))[0] for x in G.nodes()] y_coord = [mdl.wv.get_vector(str(x))[1] for x in G.nodes()] plt.clf() plt.scatter(x_coord, y_coord) plt.xlabel("Dimension 1") plt.ylabel("Dimension 2") plt.title("2 Dimensional Representation of Node2Vec Algorithm on Barbell Network") plt.show()
上の図は、によって生成された視覚的なノードの埋め込みです。バーベル グラフには、node2vec、ディープ ウォーク、ランダム ウォークなど、ノードの埋め込みを計算するための多くの方法があります。ここではnode2vecが使用されます。
エッジ埋め込み
edges_embs = HadamardEmbedder( keyed_vectors=mdl.wv ) # visualize embeddings coordinates = [ edges_embs[(str(x[0]), str(x[1]))] for x in G.edges() ] plt.clf() plt.scatter(coordinates[0], coordinates[1]) plt.xlabel("Dimension 1") plt.ylabel("Dimension 2") plt.title("2 Dimensional Representation of Edge Embeddings on Barbell Network") plt.show()
バーベル グラフによるエッジ埋め込みの視覚化を表示します。Hammard Embedder のソース コードはここにあります。 (https://github.com/eliorc/node2vec/blob/master/node2vec/edges.py#L91)。
グラフ埋め込み
n_graphs = 10 Graphs = [ nx.fast_gnp_random_graph( n = random.randint(5,15), p = random.uniform(0,1) ) for x in range(n_graphs) ] g_mdl = Graph2Vec(dimensions=2) g_mdl.fit(Graphs) g_emb = g_mdl.get_embedding() x_coord = [vec[0] for vec in g_emb] y_coord = [vec[1] for vec in g_emb] plt.clf() plt.scatter(x_coord, y_coord) plt.xlabel("Dimension 1") plt.ylabel("Dimension 2") plt.title("2 Dimensional Representation of Graph Embeddings on Randomly Generated Networks") plt.show()
これは、ランダムに生成されたグラフのグラフ埋め込み視覚化です。graph2vec アルゴリズムのソース コードは次のとおりです。ここで見つかります。 (https://karateclub.readthedocs.io/en/latest/_modules/karateclub/graph_embedding/graph2vec.html)
概要
埋め込みは、離散グラフをベクトル表現にマッピングする関数です。グラフ データ、ノード エンベディング、エッジ エンベディング、グラフ エンベディングからさまざまな形式のエンベディングを生成できます。 3 種類の埋め込みはすべて、グラフの初期構造と特徴を X 次元の数値にマッピングするベクトル表現を提供します。
以上がグラフ埋め込みの概要: ノード、エッジ、グラフの埋め込み方法と Python の実装の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

羽毛の鍵は、その漸進的な性質を理解することです。 PS自体は、勾配曲線を直接制御するオプションを提供しませんが、複数の羽毛、マッチングマスク、および細かい選択により、半径と勾配の柔らかさを柔軟に調整して、自然な遷移効果を実現できます。

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

PSフェザーリングは、イメージエッジブラー効果であり、エッジエリアのピクセルの加重平均によって達成されます。羽の半径を設定すると、ぼやけの程度を制御でき、値が大きいほどぼやけます。半径の柔軟な調整は、画像とニーズに応じて効果を最適化できます。たとえば、キャラクターの写真を処理する際に詳細を維持するためにより小さな半径を使用し、より大きな半径を使用してアートを処理するときにかすんだ感覚を作成します。ただし、半径が大きすぎるとエッジの詳細を簡単に失う可能性があり、効果が小さすぎると明らかになりません。羽毛効果は画像解像度の影響を受け、画像の理解と効果の把握に従って調整する必要があります。

mysqlダウンロードファイルは破損していますが、どうすればよいですか?残念ながら、MySQLをダウンロードすると、ファイルの破損に遭遇できます。最近は本当に簡単ではありません!この記事では、誰もが迂回を避けることができるように、この問題を解決する方法について説明します。それを読んだ後、損傷したMySQLインストールパッケージを修復するだけでなく、将来の行き詰まりを避けるために、ダウンロードとインストールプロセスをより深く理解することもできます。最初に、ファイルのダウンロードが破損した理由について話しましょう。これには多くの理由があります。ネットワークの問題は犯人です。ダウンロードプロセスの中断とネットワーク内の不安定性は、ファイル腐敗につながる可能性があります。ダウンロードソース自体にも問題があります。サーバーファイル自体が壊れており、もちろんダウンロードすると壊れています。さらに、いくつかのウイルス対策ソフトウェアの過度の「情熱的な」スキャンもファイルの破損を引き起こす可能性があります。診断問題:ファイルが本当に破損しているかどうかを判断します

MySQLのインストール障害の主な理由は次のとおりです。1。許可の問題、管理者として実行するか、SUDOコマンドを使用する必要があります。 2。依存関係が欠落しており、関連する開発パッケージをインストールする必要があります。 3.ポート競合では、ポート3306を占めるプログラムを閉じるか、構成ファイルを変更する必要があります。 4.インストールパッケージが破損しているため、整合性をダウンロードして検証する必要があります。 5.環境変数は誤って構成されており、環境変数はオペレーティングシステムに従って正しく構成する必要があります。これらの問題を解決し、各ステップを慎重に確認して、MySQLを正常にインストールします。

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。
