人間は再びトップの囲碁AIに勝つことができるでしょうか?風に逆らう一手でアマチュア四段が完勝した
2016 年は人工知能の台頭の年です。
AlphaGoが囲碁世界チャンピオンのイ・セドルを破って以来、囲碁のトップレベルを代表する棋士たちはもはや人間ではなくなった。
しかし、今日のフィナンシャル・タイムズ紙の記事により、囲碁が人々の視野に戻りました。人類は AI を倒す方法を見つけました。
7年間の休眠を経て、人間のチェスプレイヤーは復活するのでしょうか?
囲碁が逆境を破ってカムバック、人間がAIに勝つ?
FTは、米国のアマチュアチェス四段、ケリン・ペリン氏がチェスのトッププレイヤーであるAI-KataGoを一気に破ったと報じた。
オフライン マッチ 15 件のうち、パーラインは 14 件でコンピューターの助けを借りずに勝利しました。
人間のプレイヤーが囲碁の王座を取り戻せるようにする計画は、カリフォルニアの調査会社 FAR AI の研究者らによってもたらされました。チームはAIチェスプレイヤーの弱点を分析し、最終的な勝利を達成するためにそれらをターゲットにしました。
FAR AI CEO のアダム グリーブ氏は、「このシステムを悪用するのは非常に簡単です。」と述べました。 KataGo で 100 万回以上の対局を行った結果、チームが開発した AI は人間のプレイヤーが悪用できる「バグ」を発見しました。
ペリーヌ氏は、自分たちが発見した必勝法は「人間にとってはそれほど難しくない」もので、中級者でもそれを使えばマシンを倒すことができると述べた。彼はまた、この方法を使用して、別のトップ囲碁システムである Leela Zero を破りました。
#Kellin Pelrine
FT が書きました、コンピューターの助けがあったとはいえ、この決定的な勝利は人間のチェスプレイヤーへの扉を開きました。
7 年前、人工知能は最も複雑なゲームにおいて人間をはるかに上回っていました。
DeepMind が設計した AlphaGo システムは、2016 年に囲碁世界チャンピオンのイ・セドルを 4 対 1 で破りました。イ・セドル氏も惨敗から3年後に引退を表明し、AlphaGoを「無敵」と呼んだ。
人工知能の強さについて、ペリーヌはそれを真剣に考えていません。彼の意見では、チェスのゲームには多数の組み合わせとバリエーションがあるということは、コンピューターがチェスプレイヤーの将来の可能性のあるすべての手を評価するのは不可能であることを意味します。
ペルリーヌの戦略を簡単に言うと、「東を攻めて西を攻める」というものです。
一方で、ペリーヌは AI を混乱させるためにチェス盤の隅々に石を配置しますが、他方では、ペリーヌは AI プレイヤーの領域を特定します。エリアを徐々に囲んでいきます。
ペリーヌは、包囲が完了しようとしていたにもかかわらず、AIチェスプレイヤーはそのことに気付かなかったと言いました。この地域には危険があります。 「しかし、人間として、こうした脆弱性は簡単に見つけられます。」
カリフォルニア大学バークレー校のコンピューターサイエンス教授であるスチュアート・ラッセル氏は、最も先進的なコンピューターのいくつかは、囲碁ゲーム機の弱点が発見され、今日の最先端のAIを支える深層学習システムに根本的な欠陥があることが示唆された。
これらのシステムは経験した特定の状況を「理解」することしかできず、人間のように戦略について単純に一般化することはできないと同氏は述べた。
AIを倒せるのはAIだけ!しかし、厳密に言えば、研究者らは AI を通じて AI を破った、言い換えれば、人間が囲碁で AI に勝つのを助けるために AI を使用したのです。
参照元として使用された論文は、2022 年 11 月に初版が発行され、今年 1 月に更新されました。著者は MIT、カリフォルニア大学バークレー校などの機関です。
記事では、研究者らは耐性戦略を備えた AI を訓練し、最先端の囲碁人工知能システムである KataGo を破りました。
プロジェクトアドレス: https://go Attack.far.ai/adversarial-policy-katago#contents
論文アドレス: https://arxiv.org/abs/2211.00241
結果は次のようになります。 KataGo が検索ツリーを使用しない場合、攻撃者は 1,000 試合で 100% の勝率を達成します。KataGo が十分な検索を使用した場合、勝率は 97% を超えます。
これに関して、研究者らは、敵対戦略AIはKataGoに勝つことはできるが、人間のアマチュアには負けるだろうし、同時に人間のアマチュアはKataGoに勝つことはできないと強調した。
言い換えれば、この AI が勝つことができるのは、囲碁が上手だからではなく、KataGo に重大な間違いを引き起こす可能性があるからです。
攻撃戦略
この前、KataGo や AlphaZero などチェスをプレイする AI はすべてセルフプレイを通じて訓練されます。
しかし、著者が「被害者プレイ」と呼ぶこの研究では、攻撃者 (敵対者) は固定された被害者 (犠牲者) と対話する必要があります ゲームをプレイして独自の勝利戦略を訓練する(相手の動きを真似しないでください)。
これに応えて、研究者たちは、この問題を解決するために 2 つの異なる敵対的 MCTS (A-MCTS) 戦略を導入しました。
- サンプル A-MCTS-S: 研究者によって設定された検索プロセスは次のとおりです: 被害者がチェスをプレイするとき、被害者の戦略ネットワークからサンプルを採取し、次の順番になったとき攻撃、攻撃者のポリシー ネットワークからのサンプル。
- 再帰的 A-MCTS-R: A-MCTS-S は被害者の強さを過小評価しているため、研究者らは新しい戦略 A-MCTS-R を提案しました。ただし、この変更により、攻撃者のトレーニングと推論の計算の複雑さが増加します。
具体的には、A-MCTS-R では、研究者は、A-MCTS-S の被害者サンプリング ステップを置き換えて、被害者ノード上で新しい (再帰的) MCTS 検索を使用してシミュレーションします。
これはもはや完璧な被害者モデルではありませんが、被害者が検索しないと誤って想定している A-MCTS-S よりも正確である傾向があります。
以上が人間は再びトップの囲碁AIに勝つことができるでしょうか?風に逆らう一手でアマチュア四段が完勝したの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
