今日の記事は主に 2 つの部分に分かれており、1 つは Python を使用してデータ Web サイトを構築するもので、もう 1 つは Excel と Python を使用して作成された Web サイトからデータを取得するものです。
Python Flask Web フレームワークを介して Web Web サイトと Web API サービスを構築します。
「5-5-WebTable.py」という名前の新しい Python スクリプトを作成し、テーブルを含む単純な Web ページを作成します。構築方法に興味がない場合は、次のコードをスキップして、スクリプト「5-5-WebTable.py」を直接実行して Web サイトを開いてください。
(1) flask パッケージをインストールします。
pip install flask
(2) テーブルを含む Web ページを構築します。
from flask import Flask app = Flask(__name__)# 创建Falsk Web应用实例 # 将路由“/”映射到table_info函数,函数返回HTML代码 @app.route('/') def table_info(): return """<h2>HTML表格实例,用于提供给Excel和Python读取</h2> <table border="1"> <caption>用户信息表</caption> <tbody><tr> <th>姓名</th> <th>性别</th> <th>年龄</th> </tr> <tr> <td>小米</td> <td>女</td> <td>22</td> </tr> ………. </tbody></table>""" if __name__ == '__main__': app.debug = True# 启用调试模式 app.run()# 运行,网站端口默认为5000
コマンド「python ./5-5-WebTable.py」を使用して Web サイトを起動し、ブラウザに http://127.0.0.1:5000/ と入力すると、図に示す Web ページのコンテンツが表示されます。 1が表示されます。
図 1 Flask を使用して構築されたテスト Web サイト
「5-5」という名前の新しい Web サイトを作成します。 - WebAPI.py」 flask_restplus パッケージを使用して Web API サービスを構築する Python スクリプト。構築方法に興味がない場合は、次のコードをスキップして、スクリプト「5-5-WebAPI.py」を直接実行して Web API サービスを開くことができます。
(1) flask_restplus パッケージをインストールします。
pip install flask-restplus
(2) 必要なライブラリをインポートし、アプリケーションオブジェクトを初期化します。
from flask import Flask # Api类是Web API应用的入口,需要用Flask应用程序初始化 from flask_restplus import Api # Resource类是HTTP请求的资源的基类 from flask_restplus import Resource # fields类用于定义数据的类型和格式 from flask_restplus import fields app = Flask(__name__)# 创建Falsk Web应用实例 # 在flask应用的基础上构建flask_restplusApi对象 api = Api(app, version='1.0', title='Excel集成Python数据分析-测试用WebAPI', description='测试用WebAPI', ) # 使用namespace函数生成命名空间,用于为资源分组 ns = api.namespace('ExcelPythonTest', description='Excel与Python Web API测试') # 使用api.model函数生成模型对象 todo = api.model('task_model', { 'id': fields.Integer(readonly=True, description='ETL任务唯一标识'), 'task': fields.String(required=True, description='ETL任务详情') })
(3) Web API データ操作クラス。追加、削除、変更、クエリなどのメソッドが含まれます。
class TodoDAO(object): def __init__(self): self.counter = 0 self.todos = [] def get(self, id): for todo in self.todos: if todo['id'] == id: return todo api.abort(404, "ETL任务 {} 不存在".format(id)) def create(self, data): todo = data todo['id'] = self.counter = self.counter + 1 self.todos.append(todo) return todo # 实例化数据操作,创建3条测试数据 DAO = TodoDAO() DAO.create({'task': 'ETL-抽取数据操作'}) DAO.create({'task': 'ETL-数据清洗转换'}) DAO.create({'task': 'ETL-数据加载操作'})
(4) Web APIのルーティングマッピングを構築します。
HTTP リソース要求クラスは Resource クラスを継承し、使用できる HTTP メソッドを指定しながら、さまざまなルートにマップします。
@ns.route('/')# 路由“/”对应的资源类为TodoList,可使用get方法和post方法进行请求 class TodoList(Resource): @ns.doc('list_todos')# @doc装饰器对应API文档的信息 @ns.marshal_list_with(todo)# @marshal_xxx装饰器对模型数据进行格式转换与输出 def get(self):# 定义get方法获取所有的任务信息 return DAO.todos @ns.doc('create_todo') @ns.expect(todo) @ns.marshal_with(todo, code=201) def post(self):# 定义post方法获取所有的任务信息 return DAO.create(api.payload), 201 # 路由/<int:id>对应的资源类为Todo,可使用get、delete、put方法进行请求 @ns.route('/<int:id>') @ns.response(404, '未发现相关ETL任务') @ns.param('id', 'ETL任务ID号') class Todo(Resource): @ns.doc('get_todo') @ns.marshal_with(todo) def get(self, id): return DAO.get(id) @ns.doc('delete_todo') @ns.response(204, 'ETL任务已经删除') def delete(self, id): DAO.delete(id) return '', 204 @ns.expect(todo) @ns.marshal_with(todo) def put(self, id): return DAO.update(id, api.payload) if __name__ == '__main__': app.run(debug=True, port=8000)# 启动Web API服务,端口为8000
(4) Web APIサービスを起動します。
コマンド「python ./5-5-WebAPI.py」を使用して Web API サービスを開始し、ブラウザに「http://127.0.0.1:8000/」と入力します (図 5-)。 23 Web API サービスのリクエストメソッドの一覧を示します。
図 2 WebAPI サービス リクエスト メソッドのリスト
Excel には「データ」からアクセスできます。タブ 「Web サイトから」機能は、Web ページのデータをキャプチャします。 Python は、リクエスト ライブラリ、Beautiful Soup パッケージ、および Scrapy フレームワークを使用して Web ページ データをクロールできます。
「データ」→「他のソースから」→「Web サイトから」機能をクリックします。 Excel が読み取ることができる Web ページ データには制限があります。動的 Web ページ データは自動認識できず、テーブル以外のデータは自動認識できません。
(1) 「データ」→「他のソースから」→「Web サイトから」機能をクリックします。
(2) 5.5.1項のWebサイトが開いていることを確認してください。
(3) Web サイトの URL アドレス「http://127.0.0.1:5000/」を入力します。
「詳細設定」ボタンをクリックして、さらに詳細な HTTP リクエスト情報を設定し、「」をクリックします。図 3 に示すように、「OK」ボタンをクリックします。
図3 読み込むWebサイトのURLの設定
(4) 「ナビゲータ」画面でデータのインポートを選択します。
図 4 に示すように、Excel は Web ページ内のテーブル データを自動的に認識し、テーブル名を選択して [読み込み] ボタンをクリックします。
図 4 Excel は Web ページ内のテーブル データを自動的に認識します
次は、リクエスト ライブラリの使用方法を示します。次に、Web ページ全体のデータを使用して、Beautiful Soup を使用して Web ページを解析します。本書のコード資料ファイル「5-5-web.ipynb」を参照して学習してください。
(1) リクエストを通じて Web ページ データを読み取ります。
import requests #导入requests包 url ='http://127.0.0.1:5000/' strhtml= requests.get(url) #使用get方法请求网页数据
(2) Beautiful Soup を通じて Web ページを解析します。
from bs4 import BeautifulSoup soup = BeautifulSoup(strhtml.text)# 将网页内容作为参数,创建soup对象 table = soup.find('table')# 查找网页中的table元素 table_body = table.find('tbody')# 查找table元素中的tbody元素 data = [] rows = table_body.find_all('tr')# 查找表中的所有tr元素 for row in rows:# 遍历数据 cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) # 结果输出:[[], ['小米', '女', '22'],['小明','男','23'],……
Excel は、[データ] タブの [セルフ Web サイト] 機能を通じて Web API サービスを呼び出すことができます。 Python は、リクエスト ライブラリ、Beautiful Soup パッケージ、および Scrapy フレームワークを使用して Web API を呼び出してデータを取得できます。
(1) 5.5.1 項で記述した Web API サービスが開始されていることを確認します。
(2) Web API メソッドに対応する URL を入力します: http://127.0.0.1:8000/ExcelPythonTest/。
(3) 返されたデータを処理します。
Web API サービスを呼び出すと、データが JSON 形式で返され、JSON データはセクション 5.4.3 で紹介した方法に従って処理されます。
リクエスト ライブラリを使用して Web API メソッドを呼び出し、返された JSON データを処理します。読者はコード素材ファイル「5-5- api.ipynb』の本書『学ぶこと。
import requests#导入requests包 url ='http://127.0.0.1:8000/ExcelPythonTest/' strhtml= requests.get(url)#使用get方法获取网页数据 import pandas as pd frame= pd.read_json(strhtml.text)#使用Pandas包中的read_json函数 print(frame) #结果输出: id task 0 1 ETL-抽取数据操作 1 2 ETL-数据清洗转换 2 3 ETL-数据加载操作
表1所示为Excel和Python抓取互联网数据方法的对比。需要注意Excel从互联网抓取数据的功能并不完善。
表1 Excel和Python抓取互联网数据方法对比
以上がExcel と Python を使用してインターネットからデータを取得するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。