VR ヘルメットをかぶってロボットに掴み方を教えると、ロボットはその場で学習します
近年、ロボット工学の分野では、ダンスやサッカーができるロボット犬や、物を動かす二足歩行ロボットなど、多くの興味深い開発が行われています。 。通常、これらのロボットは感覚入力に基づいて制御戦略を生成することに依存しています。このアプローチでは、状態推定モジュールの開発、オブジェクトのプロパティのモデリング、コントローラーのゲインの調整といった課題を回避できますが、専門分野に関するかなりの専門知識が必要です。多くの進歩があったにもかかわらず、学習のボトルネックにより、ロボットが任意のタスクを実行し、普遍的な目標を達成することが困難になっています。
ロボット学習の鍵を理解する上で重要な質問は、「ロボットのトレーニング データをどのように収集するか?」ということです。 1 つのアプローチは、自己監視型データ収集戦略を通じてロボットに関するデータを収集することです。このアプローチは比較的堅牢ですが、比較的単純な運用タスクであっても、多くの場合、現実世界とのデータ対話に何千時間も必要となります。もう 1 つは、シミュレートされたデータでトレーニングし、実際のロボット (Sim2Real) に転送することです。これにより、ロボットは複雑なロボットの動作を桁違いに速く学習できるようになります。ただし、シミュレートされたロボット環境をセットアップし、シミュレーターのパラメーターを指定するには、多くの場合、広範な分野の専門知識が必要です。実は 3 番目の方法があり、トレーニング データを収集するには、人間の教師にデモンストレーションを依頼し、人間のデモンストレーションをすぐに模倣するようにロボットをトレーニングすることもできます。この模倣アプローチは、最近、さまざまな困難な運用上の問題において大きな可能性を示しています。しかし、これらの研究のほとんどには、ロボットの高品質なデモンストレーション データを収集することが難しいという根本的な制限があります。
上記の課題に基づいて、ニューヨーク大学とメタ AI の研究者は、実証データを収集し、器用なロボットを訓練するための新しいフレームワークである HOLO-DEX を提案しました。 VR ヘッドセット (Quest 2 など) を使用して、人間の教師を没入型の仮想世界に配置します。この仮想世界では、教師はロボットの目を通してロボットが「見ている」ものを確認し、内蔵の姿勢検出器を介して Allegro マニピュレーターを制御できます。
人間がロボットに動きを「段階的に」教えているように見えます:
- 自己監視型データ収集と比較した場合HLODEX は、強力な模倣学習テクノロジーに基づいており、報酬メカニズムなしで迅速にトレーニングできます。
- Sim2Real メソッドと比較して、学習された戦略は実際のロボットで直接実行できます。これらは実際のデータでトレーニングされます。
- 他の模倣手法と比較して、HOLODEX はドメインの専門知識の要件を大幅に軽減し、人は VR 機器を操作するだけで済みます。
#プロジェクト リンク: https://holo-dex.github.io/
コード リンク: https://holo-dex.github.io/
github.com/SridharPandian/Holo-Dex
HOLO-DEX のパフォーマンスを評価するために、この研究では、手持ちのオブジェクトやボトルのキャップを外すなど、器用さを必要とする 6 つのタスクについて実験を実施しました。片手などでこの研究では、HOLO-DEX を使用した人間の教師が単一画像遠隔操作 (遠隔操作) に関する以前の研究より 1.8 倍高速であることがわかりました。 4/6 タスクでは、HOLO-DEX 学習戦略の成功率は 90% を超えています。さらに、この研究では、HOLO-DEX を通じて学習した巧みな戦略が、新たなまだ見たことのない目標物体にも応用できることが判明しました。
全体として、この研究の貢献は次のとおりです。######
- VR ヘッドセットを使用して、人間の教師が複合現実で高品質の遠隔操作を実現する方法を提供します。
- 実験では、HOLO-DEX が収集されたデモンストレーションは、効果的で多彩な器用な操作動作を訓練するために使用できます。デザインの有用性。
- さらに、複合現実 API、HOLO-DEX に関連するリサーチ コレクションのデモンストレーション、トレーニング コードがオープン ソースになりました: https://holo-dex.github.io /
HOLO-DEX アーキテクチャの概要
以下の図 1 に示すように、HOLO-DEX は 2 つの段階で動作します。最初のフェーズでは、人間の教師が仮想現実 (VR) ヘッドセットを使用してロボットにデモンストレーションを行います。この段階には、指導用の仮想世界の作成、教師の手の姿勢の推定、教師の手の姿勢をロボット ハンドに再配置し、最後にロボット ハンドを制御することが含まれます。第 1 フェーズでいくつかのデモンストレーションを収集した後、HOLO-DEX の第 2 フェーズでは、デモンストレーションされたタスクを解決するための視覚的な戦略を学習します。
この研究では、Meta Quest 2 VR ヘッドセットを使用して、解像度 1832 × 1920、リフレッシュ レートの仮想世界に人間の教師を配置しました。 72Hzの。ヘッドセットの基本バージョンの価格は 399 ドルで、503 グラムと比較的軽いため、教師にとってプレゼンテーションがより簡単かつ快適になります。さらに、Quest 2 の API インターフェイスを使用すると、ロボット システムと診断パネルを VR で視覚化するカスタム複合現実世界を作成できます。
VR ヘッドセットを使用して手の姿勢を推定する
前回との器用さの比較 比較遠隔操作作業において VR ヘッドセットを使用すると、人間の教師にとって手の姿勢推定の点で 3 つの利点があります。まず、Quest 2 は 4 台のモノクロ カメラを使用しているため、そのジェスチャ推定器は単一カメラの推定器よりもはるかに強力です。第 2 に、カメラは内部で校正されるため、以前のマルチカメラ遠隔操作フレームワークで必要とされた特殊な校正手順は必要ありません。第三に、手の姿勢推定器がデバイスに統合されているため、72Hz でリアルタイムの姿勢を送信できます。これまでの研究では、器用な遠隔操作における大きな課題は、手の姿勢を高精度かつ高頻度で取得することであると指摘されていましたが、HOLO-DEX は商用グレードの VR ヘッドセットを使用することでこの問題を大幅に簡素化します。
次に、VR から抽出した教師の手のポーズをロボットの手にリターゲットする必要があります。これには、まず教師の手の各関節の角度を計算し、次に直接的な方向変更方法として、ロボットの関節が対応する角度に移動するように「命令」します。この方法は、研究では親指を除くすべての指で機能しましたが、Allegro ロボット ハンドの形状は人間の形状と完全には一致していないため、この方法は親指には完全には機能しません。
この問題を解決するために、この研究では教師の親指の先端の空間座標をロボットの親指の先端にマッピングし、逆運動学ソルバーを通じて親指の関節角度を計算します。 Allegro マニピュレーターには小指がないため、この研究では教師の小指の角度は無視されていることに注意してください。
姿勢リダイレクト プロセス全体では、デモを収集するための調整や教師固有の調整は必要ありません。しかし、この研究では、教師の親指からロボットの親指への特定のマッピングを見つけることで、親指のリダイレクトを改善できることがわかりました。プロセス全体の計算コストは低く、希望するロボット ハンドのポーズを 60 Hz で送信できます。
ロボットハンド制御
Allegro Handは、ROS通信フレームワークを介して非同期制御を実行します。この研究では、再配向プログラムによって計算されたロボットハンド関節の位置を考慮して、PD コントローラーを使用して必要なトルクを 300Hz で出力します。定常状態誤差を減らすために、この研究では重力補償モジュールを使用してオフセット トルクを計算します。遅延テストでは、VR ヘッドセットがロボット ハンドと同じローカル ネットワーク上にある場合、遅延が 100 ミリ秒未満に達することが研究でわかりました。 HOLO-DEX では、人間の教師によるロボット ハンドの直感的な遠隔操作が可能になるため、低遅延と低エラー率が重要です。
人間の教師がロボットハンドを制御すると、ロボットの変化をリアルタイム (60Hz) で確認できます。これにより、教師はロボットハンドの実行エラーを修正することができます。この研究では、教育プロセス中に、3 台の RGBD カメラからの観察データとロボットの動作情報を 5Hz の周波数で記録しました。この研究では、複数のカメラの記録に必要なデータ フットプリントと関連帯域幅が大きいため、記録頻度を減らす必要がありました。
HOLO-DEX データを模倣学習に使用する
データを収集したら、第 2 段階に入り、HOLO-DEX はデータに基づいて視覚的な戦略をトレーニングする必要があります。本研究では学習に最近傍模倣(INN)アルゴリズムを採用した。以前の研究では、INN が Allegro 上でスマートな状態ベースのポリシーを生成することが示されました。 HOLO-DEX はさらに一歩進んで、これらの視覚戦略がさまざまな器用な操作タスクにおける新しいオブジェクトに一般化されることを実証します。
低次元埋め込みを取得する学習アルゴリズムを選択するために、この研究ではいくつかの最先端の自己教師あり学習アルゴリズムを試したところ、BYOL が最も近い最適なアルゴリズムを提供することがわかりました。近隣の結果が得られたため、基本的な自己教師あり学習方法として BYOL が選択されました。
実験結果
以下の表 1 は、HOLO-DEX が DIME より 1.8 倍の速さで成功したデモを収集することを示しています。正確な 3D モーションが必要な 3/6 タスクの場合、単一画像の遠隔操作では 1 つのデモンストレーションを収集するのに十分ではないことが研究で判明しました。
#この研究では、器用さの課題に対するさまざまな模倣学習戦略のパフォーマンスを調査しました。以下の表 2 に示します。
この研究で提案された戦略はビジョンベースであり、オブジェクトの状態を明示的に推定する必要がないため、これらの戦略を他の戦略と比較することができます。トレーニングオブジェクトには見られない互換性があります。この研究では、以下の図 5 に示すように、さまざまな外観や形状のオブジェクトに対して平面の回転、オブジェクトの反転、および缶の回転タスクを実行するように訓練された手動操作戦略を評価しました。
さらに、この研究では、さまざまなタスクのさまざまなサイズのデータセットに対する HOLO-DEX のパフォーマンスもテストしました。下の図。
以上がVR ヘルメットをかぶってロボットに掴み方を教えると、ロボットはその場で学習しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









人型ロボット「アメカ」が第二世代にバージョンアップ!最近、世界移動通信会議 MWC2024 に、世界最先端のロボット Ameca が再び登場しました。会場周辺ではアメカに多くの観客が集まった。 GPT-4 の恩恵により、Ameca はさまざまな問題にリアルタイムで対応できます。 「ダンスをしましょう。」感情があるかどうか尋ねると、アメカさんは非常に本物そっくりの一連の表情で答えました。ほんの数日前、Ameca を支援する英国のロボット企業である EngineeredArts は、チームの最新の開発結果をデモンストレーションしたばかりです。ビデオでは、ロボット Ameca は視覚機能を備えており、部屋全体と特定のオブジェクトを見て説明することができます。最も驚くべきことは、彼女は次のこともできるということです。

産業オートメーション技術の分野では、人工知能 (AI) と Nvidia という無視できない 2 つの最近のホットスポットがあります。元のコンテンツの意味を変更したり、コンテンツを微調整したり、コンテンツを書き換えたり、続行しないでください。「それだけでなく、Nvidia はオリジナルのグラフィックス プロセッシング ユニット (GPU) に限定されていないため、この 2 つは密接に関連しています。」このテクノロジーはデジタル ツインの分野にまで広がり、新たな AI テクノロジーと密接に関係しています。「最近、NVIDIA は、Aveva、Rockwell Automation、Siemens などの大手産業オートメーション企業を含む多くの産業企業と提携に至りました。シュナイダーエレクトリック、Teradyne Robotics とその MiR および Universal Robots 企業も含まれます。最近、Nvidiahascoll

Machine Power Report 編集者: Wu Xin 国内版の人型ロボット + 大型模型チームは、衣服を折りたたむなどの複雑で柔軟な素材の操作タスクを初めて完了しました。 OpenAIのマルチモーダル大規模モデルを統合したFigure01の公開により、国内同業者の関連動向が注目を集めている。つい昨日、中国の「ヒューマノイドロボットのナンバーワン株」であるUBTECHは、Baidu Wenxinの大型モデルと深く統合されたヒューマノイドロボットWalkerSの最初のデモを公開し、いくつかの興味深い新機能を示した。 Baidu Wenxin の大規模モデル機能の恩恵を受けた WalkerS は次のようになります。 Figure01 と同様に、WalkerS は動き回るのではなく、机の後ろに立って一連のタスクを完了します。人間の命令に従って服をたたむことができる

今週、OpenAI、Microsoft、Bezos、Nvidiaが投資するロボット企業FigureAIは、7億ドル近くの資金調達を受け、来年中に自立歩行できる人型ロボットを開発する計画であると発表した。そしてテスラのオプティマスプライムには繰り返し良い知らせが届いている。今年が人型ロボットが爆発的に普及する年になることを疑う人はいないだろう。カナダに拠点を置くロボット企業 SanctuaryAI は、最近新しい人型ロボット Phoenix をリリースしました。当局者らは、多くのタスクを人間と同じ速度で自律的に完了できると主張している。人間のスピードでタスクを自律的に完了できる世界初のロボットである Pheonix は、各オブジェクトを優しくつかみ、動かし、左右にエレガントに配置することができます。自律的に物体を識別できる

以下の 10 種類の人型ロボットが私たちの未来を形作ります。 1. ASIMO: ホンダが開発した ASIMO は、最もよく知られている人型ロボットの 1 つです。身長 4 フィート、体重 119 ポンドの ASIMO には、高度なセンサーと人工知能機能が装備されており、複雑な環境をナビゲートし、人間と対話することができます。 ASIMO は多用途性を備えているため、障害を持つ人々の支援からイベントでのプレゼンテーションまで、さまざまなタスクに適しています。 2. Pepper: ソフトバンクロボティクスによって作成された Pepper は、人間の社会的パートナーになることを目指しています。表情豊かな顔と感情を認識する能力を備えた Pepper は、会話に参加したり、小売現場で手助けしたり、教育サポートを提供したりすることもできます。コショウ

掃除ロボットやモップ拭きロボットは、近年消費者の間で最も人気のあるスマート家電製品の 1 つです。操作の利便性、あるいは操作の必要がないことで、怠け者は手を解放し、消費者は日常の家事から「解放」され、好きなことにもっと時間を費やすことができるようになり、生活の質が向上します。この流行に乗って、市場に出回っているほぼすべての家電ブランドが独自の掃除ロボットや拭き掃除ロボットを製造しており、掃除ロボット市場全体が非常に活発になっています。しかし、市場の急速な拡大は必然的に隠れた危険をもたらします。多くのメーカーがより多くの市場シェアを急速に占有するために機械の海戦術を使用し、その結果、アップグレードポイントのない多くの新製品が生まれるとも言われています。まさに「マトリョーシカ」モデルです。ただし、すべての掃除ロボットやモップロボットがそうであるわけではありません。

瞬く間に、ロボットは魔法を使えるようになったのでしょうか?最初にテーブルの上の水スプーンを取り上げ、中には何も入っていないことを観客に証明したのが見られました。次に、卵のような物体を手に置き、水スプーンをテーブルに戻し、が「呪文を唱え」始めました… …再び水スプーンを拾ったそのとき、奇跡が起こりました。元々入っていた卵が消えて、飛び出してきたのがバスケットボールに… もう一度連続動作を見てみましょう: △ このアニメーションは一連の動作を2倍速で表示しており、スムーズに流れています。ビデオを 0.5 倍速で繰り返し再生すると、うまくいくでしょうか? 最後に、手の速度がもっと速ければ、敵から隠すことができるかもしれないという手がかりを発見しました。一部のネチズンは、ロボットの魔法のスキルが自分たちのものよりもさらに高いと嘆いていました。マグは私たちのためにこの魔法を実行してくれたのです。

「ゼルダの伝説 涙の王国」は、任天堂ゲーム史上最速で売れたゲームとなりました。Zonav Technology は、さまざまな「ゼルダ クリエイター」コミュニティ コンテンツをもたらしただけでなく、米国の大学の新しい工学コースにもなりました。メリーランド州(UMD)。 Rewrite: The Legend of Zelda: Tears of the Kingdom は、任天堂の史上最速で売れたゲームの 1 つです。 Zonav Technology は、豊富なコミュニティ コンテンツをもたらすだけでなく、メリーランド大学の新しいエンジニアリング コースの一部にもなりました。この秋、メリーランド大学のライアン D. ソチョル准教授は、「」と呼ばれるコースを開設しました。
