目次
深層モデルの分割と再編成
概要
ホームページ テクノロジー周辺機器 AI 積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

Apr 11, 2023 pm 08:43 PM
モデル ディープラーニング

980年前の北宋の仁宗の清暦の時代、中国では知識革命が静かに起こっていました。

#すべてのきっかけは、寺院に住む賢者の言葉ではなく、規則的に碑文が刻まれた粘土レンガが一枚ずつ焼き上げられたことです。

この革命は、「ムーバブルタイプ印刷」です。

可動活字印刷の繊細さは、職人がまず一文字の裏文字型を作り、原稿に合わせて一文字を入力し、選択してインクで印刷することで、何度でも使用できるフォントです。

#木版印刷の「1 版、1 版」の煩雑なプロセスと比較して、モジュール化 - オンデマンドで組み立て - 多用途この作業モードは印刷の効率を幾何学的に向上させ、数千年にわたる人類文明の発展と継承の基礎を築きました。

ディープラーニングの分野に戻りますが、大規模な事前トレーニング済みモデルの人気が高まっている今日、一連の大規模なモデルの機能を特定のモデルに移行する方法は次のとおりです。下流のタスクが問題になっており、それが重要な問題です。

以前の知識の伝達または再利用方法は「版刷り」に似ています。多くの場合、タスクの要件に従って新しい完全なモデルをトレーニングする必要があります。これらの方法には巨額のトレーニング費用がかかることが多く、多数のタスクに拡張するのが困難です。

そこで、非常に自然なアイデアが浮かび上がりました: ニューラル ネットワークを構成要素の集合体とみなして、新しいネットワークを取得できますか?既存のネットワークを再構築し、それを使用して転移学習を実行しますか?

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

NeurIPS 2022 にて、シンガポール国立大学よりLVlab チームは、「ディープ モデル再アセンブリ」と呼ばれる新しい転移学習パラダイムを提案しました。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

紙のリンク: https://arxiv.org/abs/2210.17409

コードリンク: https://github.com/Adamdad/DeRy

プロジェクトホームページ: https://adamdad.github.io/dery/

OpenReview: https://openreview.net/forum?id=gtCPWaY5bNh

著者既存の事前トレーニング済みモデルを機能の類似性に基づいてサブネットワークに分解し、次にそのサブネットワークを再組み立てして、特定のタスク用の効率的で使いやすいモデルを構築します。

この論文は NeurIPS に 886 点のスコアで受理され、論文賞ノミネートとして推薦されました。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

この記事では、著者は、一般的なモデルの再利用に使用する、ディープ モデル再アセンブリ (DeRy) と呼ばれる新しい知識伝達タスクを検討します。

さまざまなデータと異種アーキテクチャでトレーニングされた一連の事前トレーニング済みモデルが与えられた場合、深いモデルの再構築では、まず各モデルを独立したモデル チャンクに分割し、次にハードウェア内でサブモデルの部分を選択的に再組み立てします。そしてパフォーマンスの制約。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

この方法は、ディープ ニューラル ネットワーク モデルをビルディング ブロックとして扱うのと似ています。つまり、既存の大きなビルディング ブロックを小さなビルディング ブロックに分解してから、必要に応じて部品を組み立てます。組み立てられた新しいモデルは、より強力なパフォーマンスを備えているだけでなく、効率を確保するために、組み立てプロセスで元のモジュールの構造やパラメータをできる限り変更すべきではありません。

深層モデルの分割と再編成

この記事の方法は 2 つの部分に分けることができます。 DeRy は最初にセット カバー問題を解決し、すべての事前トレーニング済みネットワークを機能レベルに応じて分割します。2 番目のステップでは、モデル アセンブリを 0 ~ 1 の整数計画問題に形式化し、組み立てられたモデルが特定のタスクで最高のパフォーマンスを発揮できるようにします。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

##ディープモデルの再アセンブリ

まず、著者は深いモデルの再構築の問題を定義します。トレーニングされた深いモデルが与えられると、それはモデル ライブラリと呼ばれます。

各モデルは、 で表されるレイヤー リンクで構成されます。モデルが層ごとに接続されている限り、ネットワークが異なれば、まったく異なる構造や動作を持つことができます。

#与えられたタスクでは、最高のパフォーマンスを持つ層混合モデルを見つけたいと考えており、モデルの計算量は特定の制限を満たします。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

タスクのパフォーマンス; 番目のモデルの層操作を表します;

この問題では、次のことを行うために、すべてのモデル層のすべての順列を検索する必要があります。収益を最大化します。本質的に、このタスクには非常に複雑な組み合わせの最適化が含まれます。

探索コストを簡略化するために、この記事ではまずモデル ライブラリ モデルを深さ方向から分割して、より浅くて小さなサブネットワークを形成し、次にそのサブネットワークでスプライシング探索を実行します。ネットワークレベル。

機能レベルに応じてネットワークを分割する

DeRy の最初のステップは、徹底的に分解することです学習モデルは積み木のようなものです。著者は、深いネットワーク分割手法を採用して、深いモデルをいくつかの浅い小さなモデルに分割します。

記事では、分解されたサブモデルができる限り異なる機能を持つことを望んでいます。このプロセスは、積み木を解体しておもちゃ箱にカテゴリー別に入れるプロセスに例えることができます。

似たような積み木を組み合わせ、異なる積み木を分解します。

たとえば、モデルを最下位レイヤーと上位レイヤーに分割し、最下位レイヤーが主に曲線や形状などの局所的なパターンの識別を担当すると想定します。上位層はサンプルの全体的なセマンティクスを判断できます。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース#一般機能類似性測定指標を使用すると、任意のモデルの機能的類似性を定量的に測定できます。

重要なアイデアは、同様の入力に対して、同じ機能を持つニューラル ネットワークは同様の出力を生成できるということです。

したがって、2 つのネットワークの合計に対応する入力テンソル X および X' について、それらの機能的類似性は次のように定義されます。

その後、モデル ライブラリは、機能の類似性によって 機能等価セットに分割できます。

各同値セット内のサブネットワークは機能的な類似性が高く、各モデルを分割することでモデル ライブラリの分離性が保証されます。

このような逆アセンブリの主な利点の 1 つは、機能の類似性により、各等価セット内のサブネットワークがほぼ可換であると見なすことができることです。つまり、ネットワーク ブロックを次のものに置き換えることができることです。ネットワーク予測に影響を与えることなく、同じ同値セットの別のサブネットワーク。

#上記の分割問題は、3 層の制約付き最適化問題として形式化できます。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

Theこの問題の内部レベルの最適化は、一般的なカバー セット問題またはグラフ セグメンテーション問題と非常に似ています。したがって、著者はヒューリスティックな Kernighan-Lin (KL) アルゴリズムを使用して内部層を最適化します。

一般的な考え方は、ランダムに初期化された 2 つのサブモデルについて、毎回 1 つの演算層が交換されるということです。交換によって評価関数の値が増加する場合、交換は保持されます。 ; そうでなければ諦める、このやりとり。

ここの外側のループでは、K-Means クラスタリング アルゴリズムが採用されています。

ネットワーク分割ごとに、各サブネットワークは常に中心距離が最大の機能セットに割り当てられます。内側ループと外側ループは反復的であり、収束保証があるため、上記の問題を解決することで、機能レベルに応じて最適なサブネットワーク分割を得ることができます。

#整数最適化に基づくネットワーク アセンブリ

ネットワーク分割では、各ネットワークをサブネットワークに分割します。同値セットに属します。これは、ダウンストリーム タスクに最適なネットワーク スプライシングを見つけるための検索スペースとして使用できます。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

#サブモデルの多様性により、このネットワーク アセンブリは大きな探索空間を伴う組み合わせ最適化問題であり、特定の探索条件が定義されています: 各ネットワークの組み合わせは、同じ機能セットからネットワーク ブロックを取得し、元のネットワーク内の位置に従って配置します。合成されたネットワークは計算制限を満たす必要があります。このプロセスは、0 ~ 1 の整数最適化問題の最適化として説明されます。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

結合されたモデルのパフォーマンスの各計算のトレーニングのオーバーヘッドをさらに削減するために、著者は NAS トレーニングの代替関数を利用します。トレーニングは必要ありません。NASWOT に呼び出されています。これから、指定されたデータセットに対するネットワークの推論を使用するだけで、ネットワークの真のパフォーマンスを近似することができます。

上記の

分割-再結合 プロセスを通じて、さまざまな事前トレーニングされたモデルを結合および融合して、新しく強力なモデルを取得できます。 実験結果

モデルの再構成は転移学習に適しています

著者は、事前にトレーニングされた 30 個の異なるモデルを組み合わせています。ネットワーク ライブラリは丹念に分解および再組み立てされ、ImageNet および他の 9 つの下流分類タスクでパフォーマンスが評価されました。

実験では 2 つの異なるトレーニング方法が使用されました:

フルチューニング (接続されたモデルのすべてのパラメーターがトレーニングされることを意味します); フリーズ- Tuning は、スプライスされた接続層のみがトレーニングされることを意味します。

さらに、DeRy(, ,) と呼ばれる 5 つのスケール モデルが選択され、比較されました。

上の図からわかるように、ImageNet データ セット上では、DeRy によって取得されたさまざまなスケールのモデルが、モデル ライブラリ内の同様のサイズのモデルと同等かそれ以上である可能性があります。

リンク部分のパラメーターのみがトレーニングされた場合でも、モデルは依然として大きなパフォーマンス向上を得ることができることがわかります。たとえば、DeRy(4,90,20) モデルは、トレーニングされたわずか 127 万のパラメーターで 78.6% の Top1 精度を達成しました。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

同時に、9 つの転移学習実験によって DeRy の有効性も検証されました。事前トレーニングなしでも、DeRy のモデルはさまざまなモデル サイズの比較で他のモデルよりも優れたパフォーマンスを発揮できることがわかりますが、再構成されたモデルを継続的に事前トレーニングすることで、モデルのパフォーマンスが大幅に向上し、赤い曲線に達します。

LEEP や LogME などのモデル ライブラリからの他の転移学習手法と比較すると、DeRy はモデル ライブラリ自体のパフォーマンス制限を超え、業界で最高のモデルよりも優れていることさえあります。オリジナルモデルライブラリ、ベストモデル。

モデルの再編成の性質を探る

作者は、次のことについても非常に興味を持っています。この記事で提案するモデル再構成のプロパティは、「どのようなパターンに従ってモデルが分割されるか?」や「どのようなルールに従ってモデルが再構成されるか?」などです。著者は分析のための実験を提供します。

機能の類似性、再アセンブリの場所、および再アセンブリのパフォーマンス

著者は、同じネットワーク ブロックがどのように使用されるかを調査します。 other ネットワーク ブロックを機能の類似性が異なるものに置き換えた後、Freeze-Tuning 20 エポックのパフォーマンスを比較します。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

ImageNet でトレーニングされた ResNet50 の場合、第 3 段階と第 4 段階のネットワーク ブロックを使用し、別のネットワーク ブロックに置き換えます。 ResNet101、ResNeXt50、および RegNetY8G 用。

交換位置がパフォーマンスに大きな影響を与えることがわかります。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

たとえば、第 3 ステージを別のネットワークの第 3 ステージに置き換えた場合、再編成されたネットワークのパフォーマンスは特に強いでしょう。同時に、機能的類似性も組換え性能と確実に一致します。

同じ深さのネットワーク モデル ブロックは類似性が高く、トレーニング後のモデルの機能がより強力になります。これは、類似性-組換え位置-組換え性能の間の依存性と正の関係を示しています。

分割結果の観察

下の図では、著者は1 ステップの分割の結果。色は、ネットワーク ブロックと、曲の同値セットの中心にあるネットワーク ブロックとの類似性を表します。

この記事で提案されている分割では、深さに応じてサブネットワークをクラスター化し、分割する傾向があることがわかります。同時に、CNN と Transformer 間の機能類似性データは小さいですが、CNN と異なるアーキテクチャの CNN 間の機能類似性は通常より大きくなります。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

##NASWOT をパフォーマンス指標として使用する

この記事では、NASWOT をゼロトレーニング転送予測に初めて適用したため、著者はこの指標の信頼性もテストしました。

下の図では、著者はさまざまなデータセットでさまざまなモデルの NASWOT スコアを計算し、転移学習の精度プラス 1 と比較しています。

NASWOT スコアでは、より正確なパフォーマンス ランキング (Kendall のタウ相関) が得られていることがわかります。これは、この記事で使用されているゼロ トレーニング インデックスが下流データに対するモデルのパフォーマンスを効果的に予測できることを示しています。

積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリース

概要

この論文では、深層モデルの再構築 (深層モデル再構築) と呼ばれる新しい知識伝達タスクを提案します。 、略してDeRy)。彼は、既存の異種の事前トレーニング済みモデルを分割し、それらを再構築することによって、下流のタスクに適応したモデルを構築します。

著者は、このタスクを達成するための単純な 2 段階の実装を提案しています。まず、DeRy はカバリング セット問題を解決し、すべての事前トレーニング済みネットワークを機能レベルに応じて分割します。2 番目のステップでは、DeRy はモデル アセンブリを 0 ~ 1 の整数計画問題に形式化し、特定のタスクで組み立てられたモデルのパフォーマンスを保証します。最適な。

この研究では、大幅なパフォーマンスの向上が達成されただけでなく、異なるニューラル ネットワーク間の接続の可能性もマッピングされました。

以上が積み木ディープラーニングの正しい遊び方!シンガポール国立大学が、知識の伝達を活字印刷に変える新しい転移学習パラダイムである DeRy をリリースの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

See all articles