Transformer は脳を模倣し、脳画像の予測において 42 モデルを上回っており、感覚と脳の間の伝達もシミュレートできます。
多くの AI アプリケーション モデルでは、モデル構造:
Transformer について言及する必要があります。
従来の CNN と RNN を放棄し、完全にアテンション メカニズムで構成されています。
Transformer は、さまざまな AI アプリケーション モデルに記事や詩を書く機能を提供するだけでなく、マルチモーダルな側面でも優れています。
特に ViT (Vision Transformer) のリリース後、CV と NLP の間のモデルの壁が壊れ、1 つの Transformer モデルだけがマルチモーダル タスクを処理できます。
(これを読んだ後では、それがどれほど強力であるかは誰にもわかりません)
Transformer はもともと言語タスク用に設計されましたが、脳を模倣するという大きな可能性も秘めています。
いいえ、サイエンス ライターが Transformer がどのように脳をモデル化するかについてブログを書きました。
彼はカンカンに来たとき何と言ったでしょうか?
トランスフォーマー: 脳の働きをする
まず、その進化の過程を整理する必要があります。
トランスフォーマー メカニズムは 5 年前に初めて登場しましたが、これほど強力なパフォーマンスを発揮できるのは主にセルフ アテンション メカニズムによるものです。
Transformer がどのように脳を模倣するかについては、読み続けてください。
2020 年、オーストリアのコンピューター科学者 Sepp Hochreiter の研究チームは、Transformer を使用してホップフィールド ニューラル ネットワーク (記憶検索モデル、HNN) を再編成しました。
実際、ホップフィールド ニューラル ネットワークは 40 年前に提案されており、研究チームが数十年を経てこのモデルを再構成することにした理由は次のとおりです:
まず、このネットワークは A に従います。一般規則: 同時に活動しているニューロンは、互いに強い接続を確立します。
第二に、ホップフィールド ニューラル ネットワークは、メモリを取得するプロセスとトランスフォーマーのセルフ アテンション メカニズムの実装に一定の類似点があります。
そこで研究チームは、より多くの記憶を保存したり検索したりできるように、ニューロン間のより良い接続を確立するために HNN を再編成しました。
再編成のプロセスは、簡単に言うと、Transformer のアテンション メカニズムを HNN に統合し、元の不連続な HNN が連続状態になるようにすることです。
△出典: Wikipedia
再編成されたホップフィールド ネットワークは、元の入力データの保存とアクセスを可能にするレイヤーとしてディープ ラーニング アーキテクチャに統合できます。 、中間結果など。
したがって、ホップフィールド自身と MIT ワトソン人工知能研究所のドミトリー クロトフは両方とも次のように述べています:
Transformer に基づくホップフィールド ニューラル ネットワークは生物学的に合理的です。
これは脳の仕組みにある程度似ていますが、いくつかの点で十分正確ではありません。
そこで、計算神経科学者のウィッティントンとベーレンスは、ホッホライターの方法を採用し、再編成されたホップフィールド ネットワークにいくつかの修正を加え、脳内の神経発火パターンの複製などの神経科学タスクにおけるモデルのパフォーマンスをさらに向上させました。)パフォーマンス。
△Tim Behrens (左) James Whittington (右) 出典: quantamagazine
簡単に言うと、エンコードとデコード中に、モデルはもはや代わりにメモリを線形シーケンスとしてエンコードする場合、メモリを高次元空間の座標としてエンコードします。
具体的には、TEM (Tolman-Eichenbaum Machine) をモデルに導入します。
TEM は、海馬の空間ナビゲーション機能を模倣するために構築された連想記憶システムです。
空間的および非空間的構造知識を一般化し、空間的および連想記憶課題で観察されるニューロンのパフォーマンスを予測し、海馬と嗅内皮質における再マッピング現象を説明することができます。
非常に多くの機能を持つTEMとTransformerを統合してTEM-transformer (TEM-t)を形成します。
次に、TEM-t モデルを複数の異なる空間環境で学習させます。環境の構造は次の図に示すようになります。
TEM-t には、Transformer の Self-attention メカニズムがまだ残っています。このようにして、モデルの学習結果を新しい環境に転送し、新しい空間構造を予測するために使用できます。
研究では、TEM と比較して、TEM-t は神経科学タスクの実行においてより効率的であり、より少ない学習サンプルでより多くの問題を処理できることも示しています。
Transformer は、脳パターンの模倣においてますます深みを増しており、言い換えれば、Transformer パターンの開発は、脳機能の動作原理の理解を常に促進するものでもあります。
それだけでなく、いくつかの側面では、Transformer は脳の他の機能についての理解を向上させることもできます。
Transformer は脳の理解に役立ちます
たとえば、計算神経科学者の Martin Schrimpf は昨年、43 の異なるニューラル ネットワーク モデルを分析して、人間の神経活動測定への影響を観察しました。 機能的磁気 共鳴の予測力画像(fMRI)および皮質脳波検査(EEG)レポート。
その中でも、Transformer モデルは、画像処理で見られるほぼすべての変化を予測できます。
振り返ってみると、Transformer モデルから対応する脳の機能の動作を予測することもできるかもしれません。
さらに、コンピュータ科学者のYujin Tang氏とDavid Ha氏は最近、Transformerモデルを通じて意識的に大量のデータをランダムかつ無秩序に送信できるモデルを設計し、人体がどのように感覚観察を脳に伝達するかをシミュレートしました。 . .
このトランスフォーマーは人間の脳に似ており、無秩序な情報の流れをうまく処理できます。
Transformer モデルは改良を続けていますが、正確な脳モデルへの小さな一歩にすぎず、最終的に到達するにはさらに詳細な研究が必要です。
Transformer が人間の脳を模倣する方法について詳しく知りたい場合は、以下のリンクをクリックしてください~
参考リンク:
[1]https:// www.quantamagazine.org /how-ai-transformers-mimic-parts-of-the-brain-20220912/
[2]https://www.pnas.org/doi/10.1073/pnas.2105646118
[3]https://openreview.net/forum?id=B8DVo9B1YE0
以上がTransformer は脳を模倣し、脳画像の予測において 42 モデルを上回っており、感覚と脳の間の伝達もシミュレートできます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

今日は、時系列予測のパフォーマンスを向上させるために、時系列データを潜在空間上の大規模な自然言語処理 (NLP) モデルと整合させる方法を提案するコネチカット大学の最近の研究成果を紹介したいと思います。この方法の鍵は、潜在的な空間ヒント (プロンプト) を使用して時系列予測の精度を高めることです。論文タイトル: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting ダウンロードアドレス: https://arxiv.org/pdf/2403.05798v1.pdf 1. 大きな問題の背景モデル

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。
