AIGC|Stanford HAI Viewpoint Report について、Li Feifei は次のような見解を示しています
最近、リー・フェイフェイ率いるスタンフォードHAI研究所は、「生成AI」に関する展望レポートを発表しました。
#レポートは、現在の生成人工知能のほとんどが基本モデルによって駆動されていると指摘しています。
これらのモデルが私たちの生活、コミュニティ、社会にもたらす機会は膨大ですが、リスクも同様です。
#一方、生成的AI は人間の生産性と創造性を高めることができます。その一方で、社会的な偏見を増幅させ、情報に対する私たちの信頼を損なうことさえあります。
#これらのテクノロジーが私たち全員に利益をもたらすためには、分野を超えたコラボレーションが不可欠であると信じています。 「生成人工知能」が自分たちの分野と私たちの世界にどのような影響を与えるかについて、医学、科学、工学、人文科学、社会科学の分野のリーダーが語るべきことを以下に示します。
#この記事では、現在の生成 AI に関する Li Feifei と Percy Liang の洞察を選択しました。
意見レポートの全文については、
## https://hai をご覧ください。 .stanford .edu/generative-ai-perspectives-stanford-hai リー フェイフェイ: 人工知能の大きな転換点
リースタンフォードHAIの共同所長であるフェイフェイ氏は、「人工知能の大きな転換点」というメッセージを投稿した。
1966 年、MIT の研究者たちは、テクノロジーを使用して視覚システムを効果的に構築することを目的とした「サマー ビジョン プロジェクト」を立ち上げました。これがコンピュータ ビジョンと画像生成の分野における研究の始まりでした。
最近、ディープラーニングとビッグデータの密接な関係のおかげで、人々は重要な転換点に達しているようです。それは、機械がデータを生成できるようになろうとしています。言語、画像、オーディオなどの機能。
コンピューター ビジョンは、人間が認識できることを認識できる AI の構築に触発されましたが、この分野の目標は現在、それをはるかに超えています。未来に建設されるものは、人間には見えないものを見る必要があります。
#生成人工知能を使用して人間の視覚を強化するにはどうすればよいですか?
##たとえば、医療過誤による死亡は米国では憂慮すべき問題です。生成 AI は、医療提供者が潜在的な問題を認識するのに役立ちます。
まれな状況でエラーが発生した場合、生成 AI は同様のデータのシミュレートされたバージョンを作成して、AI モデルをさらにトレーニングしたり、医療従事者にトレーニングを提供したりできます。
#
新しい生成ツールの開発を開始する前に、人々がそのツールから何を得たいかに焦点を当てる必要があります。
#ロボット タスクのベンチマークを行う最近のプロジェクトでは、研究チームは作業を開始する前に大規模なユーザー調査を実施し、人々に作業量がどのくらいか尋ねました。ロボットが特定のタスクを完了することで利益を得ることができ、人間に最も利益をもたらすタスクがプロジェクトの焦点になりました。
#生成 AI によって生み出される大きな機会をつかむには、関連するリスクも適切に評価する必要があります。
ジョイ・ブオラムウィニ氏は、「Shades of Gender」と呼ばれる研究を主導し、AIが女性と有色人種の識別に問題を抱えていることが多いことを発見しました。過小評価されているグループに対する同様の偏見は、生成 AI にも今後も現れ続けるでしょう。
#画像が AI を使用して生成されたかどうかを判断することも非常に重要な能力です。人間社会は市民権への信頼の上に成り立っており、この能力がなければ信頼感は低下してしまいます。
#機械生成機能の進歩は、人間には見えないものを AI が認識できる可能性と同様に、非常にエキサイティングです。
#ただし、これらの機能が私たちの日常生活、環境、地球市民としての役割をどのように混乱させる可能性があるかに注意を払う必要があります。
パーシー・リャン: 「新カンブリア紀: 科学の興奮と不安」人間中心人工知能研究所所長スタンフォード大学、コンピューターサイエンス准教授の Percy Liang 氏が「新カンブリア紀: 科学の興奮と不安」という記事を発表しました
# #人類の歴史において、新しいものを生み出すことは常に困難であり、その能力はほぼ専門家のみが持っています。
#しかし、最近の基礎モデルの進歩により、人工知能の「カンブリア爆発」が起こり、人工知能はあらゆるものを作り出すことができるようになります。ビデオからプロテイン、そしてコードまで。
#この能力は創造の敷居を下げますが、現実を識別する能力も奪います。
#ディープ ニューラル ネットワークと自己教師あり学習に基づく基本モデルは、何十年も前から存在しています。しかし、最近では、これらのモデルをトレーニングできる膨大な量のデータにより、モデルの機能が急速に進歩しています。
2021 年に発表された論文では、基礎となるモデルの機会とリスクが詳しく説明されており、これらの新たな機能は「科学コミュニティにとって興奮の源」となるでしょう。 「意図せぬ結果」を招く可能性もあります。
#
對基礎模型進行基準測試也是十分重要的,以便研究人員更了解其能力與缺陷,並制定更合理的發展策略。
HELM(語言模型的整體評估)的發展就是為了這個目的。 HELM以準確性、穩健性、公平性等多種指標,對30多個著名的語言模型在一系列場景中的表現做出了評估。
新的模型、新的應用程式場景和新的評價指標還會出現,我們歡迎大家為HELM的發展添磚加瓦。
#以上がAIGC|Stanford HAI Viewpoint Report について、Li Feifei は次のような見解を示していますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









vue.jsのオブジェクトに文字列を変換する場合、標準のjson文字列にはjson.parse()が推奨されます。非標準のJSON文字列の場合、文字列は正規表現を使用して処理し、フォーマットまたはデコードされたURLエンコードに従ってメソッドを削減できます。文字列形式に従って適切な方法を選択し、バグを避けるためにセキュリティとエンコードの問題に注意してください。

概要:Vue.js文字列配列をオブジェクト配列に変換するための次の方法があります。基本方法:定期的なフォーマットデータに合わせてマップ関数を使用します。高度なゲームプレイ:正規表現を使用すると、複雑な形式を処理できますが、慎重に記述して考慮する必要があります。パフォーマンスの最適化:大量のデータを考慮すると、非同期操作または効率的なデータ処理ライブラリを使用できます。ベストプラクティス:コードスタイルをクリアし、意味のある変数名とコメントを使用して、コードを簡潔に保ちます。

リモートシニアバックエンジニアの求人事業者:サークル場所:リモートオフィスジョブタイプ:フルタイム給与:$ 130,000- $ 140,000職務記述書サークルモバイルアプリケーションとパブリックAPI関連機能の研究開発に参加します。ソフトウェア開発ライフサイクル全体をカバーします。主な責任は、RubyonRailsに基づいて独立して開発作業を完了し、React/Redux/Relay Front-Endチームと協力しています。 Webアプリケーションのコア機能と改善を構築し、機能設計プロセス全体でデザイナーとリーダーシップと緊密に連携します。肯定的な開発プロセスを促進し、反復速度を優先します。 6年以上の複雑なWebアプリケーションバックエンドが必要です

VueとElement-UIカスケードドロップダウンボックスv-Modelバインディング共通ピットポイント:V-Modelは、文字列ではなく、カスケード選択ボックスの各レベルで選択した値を表す配列をバインドします。 SelectedOptionsの初期値は、nullまたは未定義ではなく、空の配列でなければなりません。データの動的読み込みには、非同期でデータの更新を処理するために非同期プログラミングスキルを使用する必要があります。膨大なデータセットの場合、仮想スクロールや怠zyな読み込みなどのパフォーマンス最適化手法を考慮する必要があります。

Vue axiosのタイムアウトを設定するために、Axiosインスタンスを作成してタイムアウトオプションを指定できます。グローバル設定:Vue.Prototype。$ axios = axios.create({Timeout:5000});単一のリクエストで:this。$ axios.get( '/api/users'、{timeout:10000})。

700万のレコードを効率的に処理し、地理空間技術を使用したインタラクティブマップを作成します。この記事では、LaravelとMySQLを使用して700万を超えるレコードを効率的に処理し、それらをインタラクティブなマップの視覚化に変換する方法について説明します。最初の課題プロジェクトの要件:MySQLデータベースに700万のレコードを使用して貴重な洞察を抽出します。多くの人は最初に言語をプログラミングすることを検討しますが、データベース自体を無視します。ニーズを満たすことができますか?データ移行または構造調整は必要ですか? MySQLはこのような大きなデータ負荷に耐えることができますか?予備分析:キーフィルターとプロパティを特定する必要があります。分析後、ソリューションに関連している属性はわずかであることがわかりました。フィルターの実現可能性を確認し、検索を最適化するためにいくつかの制限を設定しました。都市に基づくマップ検索

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLの起動が失敗する理由はたくさんあり、エラーログをチェックすることで診断できます。一般的な原因には、ポートの競合(ポート占有率をチェックして構成の変更)、許可の問題(ユーザー許可を実行するサービスを確認)、構成ファイルエラー(パラメーター設定のチェック)、データディレクトリの破損(テーブルスペースの復元)、INNODBテーブルスペースの問題(IBDATA1ファイルのチェック)、プラグインロード障害(エラーログのチェック)が含まれます。問題を解決するときは、エラーログに基づいてそれらを分析し、問題の根本原因を見つけ、問題を防ぐために定期的にデータをバックアップする習慣を開発する必要があります。
