###こんにちは、みんな。
最近みんな AI ペイントで遊んでいます。GitHub でオープンソース プロジェクトを見つけたので共有します。 今日共有したプロジェクトは、GAN 敵対的生成ネットワークを使用して実装されています。GAN の原理と実践については、これまでに多くの記事を共有しました。さらに詳しく知りたい友人は、次の記事を読むことができますそれは歴史的な記事です。 ソース コードとデータ セットは記事の最後で入手できるので、プロジェクトのトレーニング方法と実行方法を共有しましょう。 1. 環境を準備しますtensorflow-gpu 1.15.0 をインストールし、GPU グラフィックス カードとして 2080Ti を使用し、cuda バージョン 10.0 を使用します。 git プロジェクトの AnimeGANv2 ソース コードをダウンロードします。 環境を設定したら、データセットと vgg19 を準備する必要があります。 dataset.zip 圧縮ファイルをダウンロードします。このファイルには、GAN トレーニング用の 6,000 枚の実際の画像と 2,000 枚のコミック画像が含まれています。 vgg19 は損失の計算に使用されます。これについては、後で詳しく説明します。 2. ネットワーク モデル敵対的生成ネットワークでは、ジェネレーターとディスクリミネーターの 2 つのモデルを定義する必要があります。 ジェネレーター ネットワークは次のように定義されます:with tf.variable_scope('A'): inputs = Conv2DNormLReLU(inputs, 32, 7) inputs = Conv2DNormLReLU(inputs, 64, strides=2) inputs = Conv2DNormLReLU(inputs, 64) with tf.variable_scope('B'): inputs = Conv2DNormLReLU(inputs, 128, strides=2) inputs = Conv2DNormLReLU(inputs, 128) with tf.variable_scope('C'): inputs = Conv2DNormLReLU(inputs, 128) inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r1') inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r2') inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r3') inputs = self.InvertedRes_block(inputs, 2, 256, 1, 'r4') inputs = Conv2DNormLReLU(inputs, 128) with tf.variable_scope('D'): inputs = Unsample(inputs, 128) inputs = Conv2DNormLReLU(inputs, 128) with tf.variable_scope('E'): inputs = Unsample(inputs,64) inputs = Conv2DNormLReLU(inputs, 64) inputs = Conv2DNormLReLU(inputs, 32, 7) with tf.variable_scope('out_layer'): out = Conv2D(inputs, filters =3, kernel_size=1, strides=1) self.fake = tf.tanh(out)
def D_net(x_init,ch, n_dis,sn, scope, reuse): channel = ch // 2 with tf.variable_scope(scope, reuse=reuse): x = conv(x_init, channel, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='conv_0') x = lrelu(x, 0.2) for i in range(1, n_dis): x = conv(x, channel * 2, kernel=3, stride=2, pad=1, use_bias=False, sn=sn, scope='conv_s2_' + str(i)) x = lrelu(x, 0.2) x = conv(x, channel * 4, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='conv_s1_' + str(i)) x = layer_norm(x, scope='1_norm_' + str(i)) x = lrelu(x, 0.2) channel = channel * 2 x = conv(x, channel * 2, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='last_conv') x = layer_norm(x, scope='2_ins_norm') x = lrelu(x, 0.2) x = conv(x, channels=1, kernel=3, stride=1, pad=1, use_bias=False, sn=sn, scope='D_logit') return x
def con_sty_loss(vgg, real, anime, fake): # 真实敵対的生成ネットワーク、AI が写真をコミック風に変換向量化 vgg.build(real) real_feature_map = vgg.conv4_4_no_activation # 生成敵対的生成ネットワーク、AI が写真をコミック風に変換向量化 vgg.build(fake) fake_feature_map = vgg.conv4_4_no_activation # 漫画风格向量化 vgg.build(anime[:fake_feature_map.shape[0]]) anime_feature_map = vgg.conv4_4_no_activation # 真实敵対的生成ネットワーク、AI が写真をコミック風に変換与生成敵対的生成ネットワーク、AI が写真をコミック風に変換的损失 c_loss = L1_loss(real_feature_map, fake_feature_map) # 漫画风格与生成敵対的生成ネットワーク、AI が写真をコミック風に変換的损失 s_loss = style_loss(anime_feature_map, fake_feature_map) return c_loss, s_loss
c_loss, s_loss = con_sty_loss(self.vgg, self.real, self.anime_gray, self.generated) t_loss = self.con_weight * c_loss + self.sty_weight * s_loss + color_loss(self.real,self.generated) * self.color_weight + tv_loss
python train.py --dataset Hayao --epoch 101 --init_epoch 10
#同時に、損失が減少していることもわかります。
ソース コードとデータ セットはパッケージ化されています。必要な場合は、コメント エリアにメッセージを残してください。
この記事が役に立ったと思われる場合は、クリックして読んでいただければ励みになります。今後も優れた Python AI プロジェクトを共有していきます。
以上が敵対的生成ネットワーク、AI が写真をコミック風に変換の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。