目次
Saturation
Hue
总结
ホームページ テクノロジー周辺機器 AI 一般的に使用される 12 の画像データ補正技術のまとめ

一般的に使用される 12 の画像データ補正技術のまとめ

Apr 11, 2023 pm 10:49 PM
機械学習 ディープラーニング データセット

機械学習または深層学習モデルをトレーニングする目標は、「汎用」モデルになることです。これには、モデルがトレーニング データセットに過剰適合しないことが必要です。つまり、モデルが目に見えないデータをよく理解している必要があります。データ拡張も、過剰適合を回避するための多くの方法の 1 つです。

モデルのトレーニングに使用されるデータの量を拡大するプロセスは、データ拡張と呼ばれます。複数のデータ型を使用してモデルをトレーニングすることにより、より「一般化された」モデルを取得できます。 「複数のデータ型」とはどういう意味ですか?この記事では、「画像」データ拡張テクノロジについてのみ説明し、さまざまな画像データ拡張戦略を詳細に紹介するだけです。また、PyTorch を使用して、主に画像データやコンピューター ビジョンで使用されるデータ拡張テクニックを実践して実装します。

一般的に使用される 12 の画像データ補正技術のまとめ


#データ拡張テクノロジーが導入されているためです。したがって、画像を 1 つだけ使用してください。最初にビジュアル コードを見てみましょう。

import PIL.Image as Image
 import torch
 from torchvision import transforms
 import matplotlib.pyplot as plt
 import numpy as np
 import warnings
 
 def imshow(img_path, transform):
ログイン後にコピー

Resize/Rescale

この関数は、画像の高さと幅を必要に応じて調整するために使用されます。特定のサイズ。以下のコードは、画像を元のサイズから 224 x 224 にサイズ変更することを示しています。

path = './kitten.jpeg'
 transform = transforms.Resize((224, 224))
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

クロッピング

この手法は、選択した画像の一部を新しい画像に適用します。たとえば、CenterCrop を使用すると、中央が切り取られた画像が返されます。

transform = transforms.CenterCrop((224, 224))
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

RandomResizeCrop

このメソッドは、トリミングとサイズ変更を同時に組み合わせます。

transform = transforms.RandomResizedCrop((100, 300))
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

Flipping

画像を水平方向または垂直方向に反転します。以下のコードは、画像に水平方向の反転を適用しようとします。

transform = transforms.RandomHorizontalFlip()
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

パディング

パディングは、画像のすべての端に指定された量をパディングすることで構成されます。各エッジを 50 ピクセルで塗りつぶします。

transform = transforms.Pad((50,50,50,50))
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

Rotation

画像にランダムな回転角度を適用します。この角度を 15 度に設定します。

transform = transforms.RandomRotation(15)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

ランダム アフィン

このテクニックは、中心を変更しないままにする変換です。この手法にはいくつかのパラメータがあります:

    degrees: 回転角度
  • translate: 水平方向および垂直方向の移動
  • scale: スケーリング パラメータ
  • share: 画像トリミングパラメータ
  • fillcolor: 画像の外側の塗りつぶしの色
  • transform = transforms.RandomAffine(1, translate=(0.5, 0.5), scale=(1, 1), shear=(1,1), fillcolor=(256,256,256))
     imshow(path, transform)
    ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

ガウスぼかし

画像は次のようになります。ガウスぼかし処理を使用してぼかします。

transform = transforms.GaussianBlur(7, 3)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

グレースケール

カラー画像をグレースケールに変換します。

transform = transforms.Grayscale(num_output_channels=3)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

カラー エンハンスメントは、カラー ディザリングとも呼ばれ、ピクセル値を変更することで画像のカラー プロパティを変更するプロセスです。以下のメソッドはすべて色関連の操作です。

明るさ

画像の明るさを変更する元の画像と比較して、結果の画像が暗くなったり、明るくなったりします。

transform = transforms.ColorJitter(brightness=2)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

コントラスト

画像の最も暗い部分と最も明るい部分の間の違いの程度をコントラストと呼びます。画像のコントラストも強調として調整できます。

transform = transforms.ColorJitter(cnotallow=2)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

Saturation

一般的に使用される 12 の画像データ補正技術のまとめ中颜色的分离被定义为饱和度。

transform = transforms.ColorJitter(saturatinotallow=20)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

Hue

色调被定义为一般的に使用される 12 の画像データ補正技術のまとめ中颜色的深浅。

transform = transforms.ColorJitter(hue=2)
 imshow(path, transform)
ログイン後にコピー

一般的に使用される 12 の画像データ補正技術のまとめ

总结

图像本身的变化将有助于模型对未见数据的泛化,从而不会对数据进行过拟合。以上整理的都是我们常见的数据增强技术,torchvision中还包含了很多方法,可以在他的文档中找到:https://pytorch.org/vision/stable/transforms.html

以上が一般的に使用される 12 の画像データ補正技術のまとめの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles