AIにも健忘症はあるのでしょうか? 41歳のイギリス人教授への独占インタビュー:壊滅的な物忘れの解決
継続的な学習を実現し、AI を継続的にするにはどうすればよいでしょうか?
最近、ロチェスター大学のコンピューター科学者クリストファー ケイナン (41 歳) は独占インタビューで、AI が時間をかけて継続的に学習できるアルゴリズムを構築していると述べました。 - 私たちと同じように 人間と同じです。
壊滅的な忘却
誰もが知っているように、AI はその後非常に長く「試験」を完了することができます。ただし、これらのアルゴリズムは、人間のように知識ベースを新しい情報で継続的に更新することはできません。
新しいことを 1 つでも学習するには、アルゴリズムを最初からトレーニングする必要がありますが、その代償として、以前に学習したことのほぼすべてを忘れてしまいます。これがもたらす問題は「壊滅的な忘却」です。新しい友達に出会ったときと同じように、彼女の名前を知る唯一の方法は脳を再起動することです。
これが起こる理由は、ニューラル ネットワークが新しいことを学習する方法によるものです。これらのアルゴリズムを学習するにはニューロン間の結合の強さを変える必要がありますが、これは過去の知識でもあるため、結合を変えすぎると忘れてしまいます。
生物学的ニューラル ネットワークは、重要な情報を安定に保つために、数億年にわたって戦略を進化させてきました。しかし、今日の人工ニューラル ネットワークは、古い知識と新しい知識の間でバランスをとるのに苦労しています。ネットワークが新しいデータを認識すると、その接続は簡単に上書きされる可能性があり、その結果、突然、過去の情報を認識できなくなる可能性があります。
1. 哲学の研究は、研究に対する考え方にどのような影響を与えましたか?
哲学が教えてくれるのは、「どのようにして合理的な議論を展開するのか」と「どのように他人の議論を分析するのか」ということです。
私の研究室は、次の質問に触発されました。 X ができない場合、どうやって Y を行うことができますか?
私たちは時間の経過とともに学習しますが、ニューラル ネットワークは学習しません。その知識の量は固定されています。したがって、将来人間が汎用人工知能を作成したい場合、これは解決しなければならない基本的な問題です。
Kanan の研究ノート
2. 学界における壊滅的な物忘れの解決における現在の進歩はどのようなものですか?
現時点で最も成功している方法はリプレイと呼ばれるもので、過去の知識を保存し、トレーニング プロセス中に新しいデータ セットでそれをリプレイできるため、元の情報が失われることはありません。
この方法は、私たちの脳の記憶固定プロセス (Memory Consolidation) からインスピレーションを得たもので、睡眠中にニューロンの活性化に合わせて 1 日の学習内容が再エンコードされて再生されます。
#言い換えれば、新しい学習によってアルゴリズムの過去の知識を完全に消去することはできません。
これを実現するには 3 つの方法があります。
- 最も一般的なアプローチは「リアル リプレイ」です。このアプローチでは、研究者は元の入力のサブセット (たとえば、物体認識タスクの生の画像) を保存し、これらの保存された過去の画像と学習した画像を組み合わせます。新しいイメージが融合。
- 2 番目の方法は、イメージの圧縮表現を再生することです。
- 3 番目のあまり一般的ではない方法は、「リプレイの生成」です。
ここで、人工ニューラル ネットワークは実際に過去の経験の合成バージョンを生成し、その合成例を新しい例と混合します。私の研究室では、後者の 2 つのアプローチに重点を置いています。
3. 壊滅的な忘却を完全に解決できれば、人工知能は時間をかけて新しいことを学習し続けることができるということになるでしょうか? ############完全ではありません。継続学習の分野における未解決の問題は、壊滅的な忘れではないと思います。
私が本当に興味があるのは、過去の学習によって将来の学習がどのように効率化できるのかということです。未来の学習は過去の学習をどのように修正するのでしょうか?これらを測定する人はほとんどいません。測定することは、この分野を前進させるための重要な部分だと私は思います。なぜなら、それは単に何かを忘れることではなく、より良い学習者になることだからです。
クリストファー・ケイナンはこう言いました:
現代のニューラル ネットワークよりもはるかに多くのことが私たちの頭の中で起こっていることは間違いありません。過去の学習が将来の学習に役立つかどうかを測定するには、適切な実験およびアルゴリズムの設定をセットアップする必要があります。そして、現在の最大の問題は、継続学習を研究するための優れたデータセットがないことです。基本的に、従来の機械学習で使用されている既存のデータセットを取得し、それらをゼロから開発しています。
一般的に言えば、機械学習の通常の動作では、トレーニング セットとテスト セットがあり、トレーニング セットでトレーニングし、テスト セットでテストします。
しかし、継続的な学習はこれらのルールを破ります。トレーナーが学習するにつれてトレーニング セットを発展させることができるため、非常に優れた継続的な学習環境が必要です。
4.理想的な継続学習環境とはどのようなものであるべきでしょうか?
それが何であるかよりも、何でないのかを説明する方が簡単です。
それが持つ可能性のある特性についてお話します。そこで今のところ、AI アルゴリズムがシミュレーションで具現化された知性ではないと仮定しましょう。そして、少なくとも理想的には、私たちはビデオなど、マルチモーダル ビデオ ストリームのようなものから学習しており、単に静止画像を分類する以上のことをしたいと考えています。
これについては未解決の疑問がたくさんあります。数年前、継続学習のワークショップに参加したとき、私と同じような人が「MNIST というデータセットの使用をやめなければなりません。単純すぎるのです。」と言いました。すると、誰かが「それでは、インクリメンタルを使用することにします」と言いました。 StarCraft で学習しています。」
さまざまな理由でこれを実行していますが、問題を実際に解決するには十分ではないと思います。結局のところ、人生には StarCraft の遊び方を学ぶこと以外にもたくさんのことがあります。
5.あなたの研究室では、時間の経過とともに学習するアルゴリズムをどのように設計しようとしていますか?
私の元生徒であるタイラー ヘイズと私は、類推論に関する継続的学習研究の先駆者となりました。この記事は CVPR 2021 にも掲載されました。
論文リンク: https://openaccess.thecvf.com/content/CVPR2021W/CLVision/html/Hayes_Selective_Replay_Enhances_Learning_in_Online_Continual_Analogical_Reasoning_CVPRW_2021_paper.html
これは次のようになると考えられます。より複雑な問題を解決するには、より高度なスキルを使用する必要があるため、転移学習のアイデアを学ぶのに適した分野です。
具体的には、逆方向伝達、つまり過去に学んだことが将来どれだけ役立つか、またその逆についてのデータを測定しました。
私たちは、物体認識のような単純なタスクよりもはるかに重要な、転移の良い証拠を発見しました。
6.人工知能は本当に人間と同じように学習できると思いますか?
#そうなると思います。この分野には、この目標に向かって取り組んでいる非常に優秀な人材がたくさんいます。 しかし、私たちに必要なのは創造性です。機械学習コミュニティにおける多くの研究は、以前の研究に基づいていくつかの小さな改良を加えたものであり、真に革新的な研究はそれほど多くありません。 しかし、その日は必ず来ます、それは時間の問題です。 クリストファー・ケイナン クリストファー・ケイナンは、ロチェスター大学のコンピューターサイエンスの終身准教授です。主な研究の方向性は、継続学習、人工知能のバイアス、医療用コンピューター ビジョン、言語ガイドによるシーン理解を含む深層学習に関する基礎研究です。2006 年に、計算神経科学とニューラル ネットワークのパイオニアであるマイケル アービブと協力して、人工知能と神経科学に焦点を当て、南カリフォルニア大学 (USC) でコンピューター サイエンスの修士号を取得しました。 2013 年にカリフォルニア大学サンディエゴ校 (UCSD) からコンピューター サイエンスの博士号を取得しました。卒業後、ケイナンはカリフォルニア工科大学に進学し、博士研究員としての研究に従事しました。
参考: https://www.quantamagazine.org/the-computer-scientist-trying-to-teach-ai-to-learn-like-we- do -20220802/
以上がAIにも健忘症はあるのでしょうか? 41歳のイギリス人教授への独占インタビュー:壊滅的な物忘れの解決の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











2025年の世界の上位10の暗号通貨取引所には、Binance、Okx、Gate.io、Coinbase、Kraken、Huobi、Bitfinex、Kucoin、Bittrex、Poloniexが含まれます。これらはすべて、高い取引量とセキュリティで知られています。

ビットコインの価格は20,000ドルから30,000ドルの範囲です。 1。ビットコインの価格は2009年以来劇的に変動し、2017年には20,000ドル近くに達し、2021年にはほぼ60,000ドルに達しました。2。価格は、市場需要、供給、マクロ経済環境などの要因の影響を受けます。 3.取引所、モバイルアプリ、ウェブサイトを通じてリアルタイム価格を取得します。 4。ビットコインの価格は非常に不安定であり、市場の感情と外部要因によって駆動されます。 5.従来の金融市場と特定の関係を持ち、世界の株式市場、米ドルの強さなどの影響を受けています。6。長期的な傾向は強気ですが、リスクを慎重に評価する必要があります。

Memebox 2.0は、革新的なアーキテクチャとパフォーマンスのブレークスルーを通じて、暗号資産管理を再定義します。 1)3つの主要な問題点を解決します。資産サイロ、収入の減少、セキュリティと利便性のパラドックスです。 2)インテリジェントアセットハブ、動的リスク管理およびリターンエンハンスメントエンジン、クロスチェーン移動速度、平均降伏率、およびセキュリティインシデント応答速度が向上します。 3)ユーザーに、ユーザー価値の再構築を実現し、資産の視覚化、ポリシーの自動化、ガバナンス統合を提供します。 4)生態学的なコラボレーションとコンプライアンスの革新により、プラットフォームの全体的な有効性が向上しました。 5)将来的には、スマート契約保険プール、予測市場統合、AI主導の資産配分が開始され、引き続き業界の発展をリードします。

現在、上位10の仮想通貨交換にランクされています。1。Binance、2。Okx、3。Gate.io、4。CoinLibrary、5。Siren、6。HuobiGlobal Station、7。Bybit、8。Kucoin、9。Bitcoin、10。BitStamp。

世界の上位10の暗号通貨取引プラットフォームには、Binance、Okx、Gate.io、Coinbase、Kraken、Huobi Global、Bitfinex、Bittrex、Kucoin、Poloniexが含まれます。これらはすべて、さまざまな取引方法と強力なセキュリティ対策を提供します。

Binance、OKX、Gate.ioなどの上位10のデジタル通貨交換は、システムを改善し、効率的な多様化したトランザクション、厳格なセキュリティ対策を改善しました。

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

CのDMAとは、直接メモリアクセステクノロジーであるDirectMemoryAccessを指し、ハードウェアデバイスがCPU介入なしでメモリに直接データを送信できるようにします。 1)DMA操作は、ハードウェアデバイスとドライバーに大きく依存しており、実装方法はシステムごとに異なります。 2)メモリへの直接アクセスは、セキュリティリスクをもたらす可能性があり、コードの正確性とセキュリティを確保する必要があります。 3)DMAはパフォーマンスを改善できますが、不適切な使用はシステムのパフォーマンスの低下につながる可能性があります。実践と学習を通じて、DMAを使用するスキルを習得し、高速データ送信やリアルタイム信号処理などのシナリオでその効果を最大化できます。
