今夜はメッシとモドリッチのために夜更かししましょう!この CV モデルでは、ボールを推測することで勝つことができます。
一昨日、ロナウドのファンは悲しみに暮れました。
12月11日にカタールで行われたワールドカップで、ポルトガルはモロッコに敗れ準々決勝止まりとなり、ロナウドのワールドカップの旅は惜しくも幕を閉じた。 ########################C・ロナウドは夢が終わったと言いました#この熱い検索には悲痛なファンが数多く集まりました。
ポルトガル対モロッコの試合は0対1という番狂わせの結果となった。ロナウドが泣いている、ネイマールが泣いている、次は誰になるだろうか?
しかし、ロナウドの悲しみを乗り越える前に、今夜、メッシとモドリッチの間で再び決闘が行われます!
怖くて心が耐えられないですか?
このようなモデルを使用すると、試合開始から 5 分以内に試合が番狂わせになるかどうかを事前に知ることができるかもしれません。
サッカーでコンピューター ビジョンが使用される場合
3 年前、彼は YOLOv3 を使用してバスケットボール コート上の選手を検出し、分類しようとしました。
今回の FIFA ワールドカップが彼にこの考えを再び抱かせました。
今回、彼は YOLOv5 と ByteTRACK を組み合わせて、フィールド上のサッカー選手を追跡しました。
ステップ 1: 事前トレーニングされた検出器を構築する
当初、Skalski はカスタム モデルのトレーニングを省略したいと考えていました。
彼は、開始から終了まで数時間しかかからず、すぐに勝利できることを望んでいました。
YOLOv5 および YOLOv7 モデルのトレーニングに使用される人気のある COCO データ セットには、彼が最も関心のある 2 つのクラス (人物とスポーツ ボール) が含まれているため、彼は非常に楽観的になり、実現できると考えています。トレーニング用のCOCOチェックポイントになります。
彼は、Kaggle のブンデスリーガ データ戦争から数十の短いサッカーの試合ビデオをすぐにダウンロードし、事前トレーニングされたモデルをテストに使用しました。
iou_threshold、confident_threshold、input_resolution などのさまざまな構成を試した後、残念な結果が得られました。
このモデルでは、ボールはいくつかのビデオ フレームでのみ検出されます。モデルがそのような小さくて高速で移動する物体を確実に追跡するにはフレーム数が少なすぎるためです。
#一方、このモデルは、フィールド外の多くの冗長なオブジェクト (コーチ、ファン、メンテナンス要員、カメラクルーなど) を検出します。これらの冗長オブジェクトについては、追加の検出およびフィルタリング ロジックを記述する必要がありますが、これは非常に面倒です。
データセットに必要なクラスが含まれている場合でも、推論に使用されるビデオはトレーニングに使用される画像とは明らかに大きく異なることがわかります。
この場合、Skalski は独自のデータセットを作成し、カスタム モデルをトレーニングすることしかできません。
ステップ 2: カスタム検出器を構築する
カスタム モデルのトレーニングには多大な労力が必要です。
主な理由は、画像に注釈を付けるために多くの手動作業を行う必要があることです。
時間が急ぐため、プロセスを可能な限り簡素化する必要があります。
Skalski は、前述の Kaggle データセットから数十のビデオを選択し、FFmpeg を使用して各ビデオから 10 フレーム (3 秒ごとに 1 フレーム) を抽出しました。
次のステップでは、画像に自動予備アノテーションを実行し、検出されたオブジェクトを txt ファイルに保存して、事前トレーニングされた YOLOv5 モデルを利用します。
次に、第 2 段階はデータを改善することです。
コンピューターは作業の 90% を完了していましたが、スカルスキー氏の手動修正には依然として 5 時間近くかかりました。
同時に、審判とゴールキーパーという 2 つの追加オブジェクト クラスも導入しました。彼の仕事の成果は Roboflow Universe で見ることができます。データセットはオープンソースであり、誰でも無料で使用できます。
#事前トレーニングされたサッカー選手検出器とカスタムのサッカー選手検出器
カスタム トレーニングこの結果により、スカルスキーは上記 2 つの問題を解決することに自信を持っています。
しかし、残念ながら、おそらく分類の不均衡が原因で、このモデルにはゴールキーパー クラスの検出に依然として問題があります。
ということで、次のステップでは、スカルスキーはすべてのゴールキーパーを普通のサッカー選手として扱います。
Skalski のモデルは、彼のデータセットと同様に Roboflow Universe で利用できます。テスト画像をドラッグ&ドロップするだけです。
ステップ 3: オブジェクトを追跡する
Skalski は ByteTRACK (SOTA マルチオブジェクト トラッカー 1) を使用しています。 ) ビデオ内のオブジェクトを追跡します。
ByteTRACK は内部でニューラル ネットワークを使用しません。このモデルの威力は、フレーム全体で境界ボックスの位置を比較するという単純な計算によってもたらされます。
最も重要なことは、ByteTRACK は検出を担当せず、追跡のみを担当するということです。したがって、他のトラッカーのように個別のトレーニングを必要としません。
したがって、ByteTRACK を使用すると、コード全体のアーキテクチャを再設計することなく、検出器を簡単に置き換えることができます。
以下は簡略化されたコード スニペットです。独自のプロジェクトでは、ByteTRACK の開始コードを使用する必要があります。
ByteTRACK プロジェクトでは、フレーム上のすべてのオブジェクトに一意の ID があります。
これはモデルの結果です:
ByteTRACK の単一フレームの結果
ご覧のとおり、各プレーヤーには一意の番号が割り当てられ、フレーム間で追跡されます。
もちろん、検出と追跡は始まりにすぎません。
これで、次のレベルに進むことができます。
たとえば、アクションのコースをすばやく分析して、ボールがプレーヤー間でどのように移動するかを理解したり、プレーヤーが移動した距離を計算したり、ボールの領域を特定したりできるようになりました。最も頻繁に出現するフィールド。
ネチズン: ギャンブルをしないのは残念だ
一部のネチズンは次のように述べています。ギャンブルをしないのは残念だ。それは損だ。
この点に関して、一部の興奮したネチズンは次のように述べました。 "
"各オフェンス プレーヤーのパス ステータスと準備状況を毎秒表示できます。一度もパスされたことがないプレーヤーの 360 度ビューを実行することもできます。パフォーマンス評価、これは推定オッズよりもはるかに正確です!」
一部のネチズンは次のように述べています: Dream はリアルタイムのミニマップですサッカーの試合用に。
一部の真剣なネチズンは、「このスクリプトは、地面全体をカバーする片側からなど、固定カメラ アングルにのみ適用できるのですか?」と質問しました。 3 ~ 4 人のプレーヤーに焦点を当てるなど、他のカメラ アングルで使用することはできますか?」
この投稿の所有者は次のように答えました。「他の角度からのユースケースを追加できると思います。データを使用してモデルを再トレーニングすれば、同じようにパフォーマンスが向上するはずです。」
そしてネットユーザーは次のように言いました。「別の角度からデータをトレーニングすると機能しないと感じます。私の考えは、カメラの全角度で撮影しながらスクリプトの実行を続けますが、ボールとその周囲の選手の位置に注意し、他のフィードのデータにタグを付けます。」
以上が今夜はメッシとモドリッチのために夜更かししましょう!この CV モデルでは、ボールを推測することで勝つことができます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

今日は、時系列予測のパフォーマンスを向上させるために、時系列データを潜在空間上の大規模な自然言語処理 (NLP) モデルと整合させる方法を提案するコネチカット大学の最近の研究成果を紹介したいと思います。この方法の鍵は、潜在的な空間ヒント (プロンプト) を使用して時系列予測の精度を高めることです。論文タイトル: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting ダウンロードアドレス: https://arxiv.org/pdf/2403.05798v1.pdf 1. 大きな問題の背景モデル

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。
