AI 次元削減が人間のペインターを攻撃し、ヴィンセント グラフが ControlNet に導入され、深さとエッジ情報が完全に再利用可能になります
大規模なテキスト画像モデルの出現により、魅力的な画像の生成は非常に簡単になり、ユーザーは指の動きで簡単なプロンプトを入力するだけで済みます。一連の操作を通じてイメージを取得した後、必然的にいくつかの疑問が生じます。プロンプトに基づいて生成されたイメージは要件を満たしているか?ユーザーから提起されるさまざまな要件に対処するには、どのようなアーキテクチャを構築する必要があるか?大規模なモデルでも、特定のタスクにおいて数十億の画像から得られる利点と機能を維持できるでしょうか?
これらの質問に答えるために、スタンフォードの研究者はさまざまな画像処理アプリケーションについて多数の調査を実施し、次の 3 つの発見に至りました。
まず第一に、特定のフィールドで利用可能なデータは、実際には一般的なモデルをトレーニングするためのデータよりも少ないです。これは主に、たとえば、特定の問題 (ジェスチャー理解、など) は通常 100k 未満で、大規模データセットよりも小さいです。マルチモーダル テキスト画像データセット LAION 5B は 5 × 10^4 桁小さいです。これには、ニューラル ネットワークがモデルの過剰適合を回避するために堅牢であること、および特定の問題を対象とする場合に適切な一般化ができることが必要です。
第 2 に、画像タスクのデータ駆動型処理を使用する場合、大規模なコンピューティング クラスターが常に利用できるとは限りません。ここで、高速トレーニング方法、つまり許容可能な時間とメモリ空間内で特定のタスクに合わせて大規模なモデルを最適化できる方法が重要になります。さらに、後続の処理で微調整、転移学習、その他の操作が必要になる場合があります。
最後に、画像処理プロセスで遭遇するさまざまな問題には、さまざまな定義形式があります。これらの問題を解決する際、画像拡散アルゴリズムは「手続き型」の方法で調整することができます。たとえば、ノイズ除去プロセスの制約、多頭注意の活性化の編集などですが、これらの手作りのルールは基本的に人間の指示によって指示されます。深度画像、ポーズ人物などのいくつかの特定のタスクを考慮すると、これらの問題は基本的に生の入力を解釈してオブジェクト レベルまたはシーン レベルで理解する必要があるため、手作りの手続き型アプローチは実現可能性が低くなります。したがって、複数のタスクでソリューションを提供するには、エンドツーエンドの学習が不可欠です。
上記の発見に基づいて、この論文では、追加の条件を追加することで拡散モデル (安定拡散など) を制御できるエンドツーエンドのニューラル ネットワーク アーキテクチャ ControlNet を提案します。グラフの改善や、線画からのフルカラー画像の生成、同じ奥行き構造の画像の生成、手のキーポイントによる手の生成の最適化などが可能です。
論文アドレス: https://arxiv.org/pdf/2302.05543.pdf
プロジェクトアドレス: https://github.com/lllyasviel/ControlNet
効果の表示
それでは、ControlNet の効果とは何でしょうか?
キャニーエッジ検出:元画像から線画を抽出することで、同じ構図の画像を生成できます。
#奥行き検出: 元の画像の奥行き情報を抽出することで、同じ奥行き構造を持つマップを生成できます。 。
セマンティック セグメンテーションを使用した ControlNet:
学習ベースの使用ハフ変換は Places2 から直線を検出し、BLIP を使用して字幕を生成します。
メソッドの紹介
ControlNet は、タスク固有の条件で事前トレーニングされた画像拡散モデルを強化するニューラル ネットワーク アーキテクチャです。まず、ControlNet の基本構造を見てみましょう。
ControlNet は、ニューラル ネットワーク ブロックの入力条件を操作し、それによってニューラル ネットワーク全体の全体的な動作をさらに制御します。ここで「ネットワーク ブロック」とは、resnet ブロック、マルチヘッド アテンション ブロック、Transformer ブロックなど、ニューラル ネットワークを構築するための共通の単位としてまとめられるニューラル層のグループを指します。
2D 特徴を例として、特徴マップ x ϵ R^h×w×c を指定します。ここで、{h, w, c} は高さ、幅、チャネル数です。それぞれ。パラメータ Θ のセットを持つニューラル ネットワーク ブロック F (・; Θ) は、以下の式 (1) に示すように、x を別の特徴マップ y に変換します。
#このプロセスを以下の図 2-(a) に示します。
#画像拡散モデルにおける ControlNet
#研究者は、安定拡散を例として、ControlNet コントロールの使用方法を紹介しました。 - タスク固有の条件を備えたスケール拡散モデル。安定拡散は、数十億の画像でトレーニングされた大規模なテキストから画像への拡散モデルであり、本質的にはエンコーダー、中間ブロック、および残差接続デコーダーで構成される U-net です。
以下の図 3 に示すように、研究者は ControlNet を使用して U-net の各層を制御します。ここでの ControlNet の接続方法は計算効率が高いことに注意してください。元の重みがロックされているため、元のエンコーダーでの勾配計算にはトレーニングが必要ありません。また、元のモデルの勾配計算の半分が削減されるため、トレーニングが高速化され、GPU メモリが節約されます。 ControlNet を使用して安定拡散モデルをトレーニングするには、トレーニング反復ごとに約 23% 多くの GPU メモリと 34% 多くの時間を必要とするだけです (単一の Nvidia A100 PCIE 40G でテスト)。
トレーニングとトレーニングの強化
画像 z_0 が与えられると、拡散アルゴリズムは画像に徐々にノイズを追加し、ノイズ画像 z_t、t はノイズを追加する回数です。 t が十分に大きい場合、画像は純粋なノイズに近似します。以下の式 (10) に示すように、タイム ステップ t、テキスト プロンプト c_t、およびタスク固有の条件 c_f を含む一連の条件が与えられると、画像拡散アルゴリズムはネットワーク ϵ_θ を学習して、ノイズのある画像 z_t に追加されるノイズを予測します。
トレーニング プロセス中に、研究者らはテキスト プロンプト c_t の 50% を空の文字列にランダムに置き換えました。これは、入力条件マップからセマンティック コンテンツを識別する ControlNet の機能にとって有益です。
さらに、研究者らは、特にコンピューティング デバイスが非常に限られている場合 (ラップトップなど)、または非常に強力な場合 (大規模なコンピュータなど)、ControlNet のトレーニングを改善するためのいくつかの戦略についても議論しました。 GPU が利用可能)、コンピューティング クラスター)。
技術的な詳細については、元の論文を参照してください。
以上がAI 次元削減が人間のペインターを攻撃し、ヴィンセント グラフが ControlNet に導入され、深さとエッジ情報が完全に再利用可能になりますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。
