


中国科学院と香港大学のチームは、低エネルギー消費と低消費時間を実現する新しい方法を使用して、ウェアラブルセンサーの内部貯留層計算のマルチタスク学習を実行します。
センサー内マルチタスク学習は、生物視覚の重要な利点であるだけでなく、人工知能の主要な目標でもあります。ただし、従来のシリコン ビジョン チップには大きな時間とエネルギーのオーバーヘッドがあります。さらに、従来の深層学習モデルのトレーニングは、エッジ デバイスでは拡張性がなく、手頃な価格でもありません。
ここでは、中国科学院と香港大学の研究チームが、低いオーバーヘッドで人間の網膜の学習パラダイムをシミュレートする材料アルゴリズムの共同設計を提案しています。効率的な励起子解離と空間電荷輸送特性を備えたボトルブラシ型半導体 p-NDI に基づいて、さまざまなタスク特性、減衰メモリ、およびエコー状態特性において優れた分離性を示すウェアラブル トランジスタ ベースのダイナミック センサー リザーバー コンピューティング システムが開発されています。
メムリスティブ有機ダイオードの「読み取り機能」と組み合わせることで、RC は手書きの文字と数字を認識し、さまざまな衣類を 98.04%、88.18%、91.76% の精度で分類できます。 (報告されているすべての有機半導体よりも高い)。
2D 画像に加えて、RC の時空間ダイナミクスはイベントベースのビデオから自然に特徴を抽出し、3 種類のジェスチャーを 98.62% の精度で分類します。さらに、計算コストは従来の人工ニューラル ネットワークよりも大幅に低くなります。この研究は、手頃な価格で効率的なフォトニックニューロモーフィックシステムのための有望な材料とアルゴリズムの共同設計を提供します。
研究のタイトルは「マルチタスク学習のための空間電荷輸送特性を備えた光電子ポリマーを使用したウェアラブル・インセンサー・リザーバー・コンピューティング」であり、公開される予定です。 in 2023 1月28日「Nature Communications」に掲載されました。
人間の網膜は、感知するだけでなく、豊富な動的信号を収集することで光信号を同時に処理し、それによって下流の視覚野における課題関連の学習を促進します。網膜と視覚野の相乗効果は、マルチタスクを効率的、コンパクトかつ迅速に学習する脳の能力の基礎となっており、汎用人工知能 (AGI) の基本的な目標です。
対照的に、物理的に分離されたセンシング、処理、およびストレージユニットを備えた従来のシリコンビジョンチップでは、これらのユニット間で大規模かつ頻繁にデータが往復するため、多大な時間とオーバーヘッドが発生します。これは、逐次的なアナログからデジタルへの変換と同様に、潜在的なエネルギー効率の根本的な制限です。この状況は、ムーアの法則の減速によってさらに悪化しています。さらに、時間信号のリカレント ニューラル ネットワークなどの従来の深層学習モデルでの学習では、非常に特殊なタスク (時間にわたる逆伝播による勾配降下法、BPTT など) に関する退屈なトレーニングが使用されますが、これはバッテリー アクセスとフォーム ファクターの点で困難です。フォームファクターが限られたエッジデバイスでは、スケーラブルでも手頃な価格でもありません。
人間の網膜と手頃な価格の学習パラダイムをシミュレートするために多大な努力が払われてきました。材料的には、欠陥と不純物サイトを有するMoS2、SnとSに関係する二重型欠陥状態を有するSnS、層状酸化物などの無機光応答性二次元半導体黒リンの関連欠陥、強い光制御効果を示すペロブスカイト量子ドット、h-BN/WSe2 ヘテロ構造と電子を捕捉・放出できる性能入札 状態変化する MoO #xxx は人工網膜に最も広く使用されている材料です。さらに、PDVT-10、クロロフィルドープ PDPP4T、ペンタセン/シルクおよび CD 二重層など、本質的に生体適合性、ウェアラブル、スケーラブルな有機半導体は、より忠実な方法で生物学的対応物を模倣します。
アルゴリズムの観点から見ると、リザーバー コンピューティング (RC) は、固定動的システムのフェージング メモリを収集することで時間信号を特徴空間に非線形に投影し、有望なエッジ学習ソリューションと考えられています。 RC の学習は長期記憶の読み出し層に限定されるため、従来の深層学習モデルと比較してトレーニング コストが大幅に削減されます。しかし、効率的な人工網膜と手頃な価格の RC ベースのエッジ学習を組み合わせて、生体模倣ニューロモーフィック ビジョンのマルチタスクの可能性を解き放つペアマテリアル アルゴリズムはまだ考案されていません。
#図: 従来の半導体と p-NDI、および内部の RC システムの光電流応答の比較センサー 半導体設計原理の詳細。 (出典: 論文)
ここで、中国科学院と香港大学の研究者らは、効率的な励起子解離と全空間電荷輸送特性を備えた光応答性半導体ポリマー (p-NDI) の材料アルゴリズム共同設計を提案しています。 、マルチタスク パターン分類用のセンサー内 RC を構築します。この柔軟なニューロモーフィック デバイスは、p-NDI 半導体チャネルを備えた 3 端子トランジスタに基づいています。優れた光応答挙動と非線形フェージングメモリにより、このデバイスは光入力をその場で同時に感知、記憶、前処理することができます (つまり、コントラスト強調とノイズ低減)。
#図: マルチタスク分類のパフォーマンス。 (出典: 論文)
さらに、ポリマーにおける励起子の解離/電荷再結合ダイナミクス、光ゲート効果、および空間を通過する電荷輸送特性の間の相乗効果により、トランジスタベースのダイナミック RC システムは、さまざまなタスクで優れた分離性、減衰メモリ、およびエコー状態特性を示します。これらの RC ベースの網膜は、メムリスティブ有機イオン ゲル ダイオードに実装された「読み出し機能」と組み合わされています。
すべての有機光電子材料が提供する信号前処理とダイナミック RC の相乗機能により、手書きの文字と数字の識別とさまざまな衣類の分類でそれぞれ 98.04%、88.18%、91.76 の精度を達成しました。 %、これは衣服のスタイルとサイズについてのマルチタスク学習を意味します。システムの全体的な精度は 88.00% で、衣服を正確に識別するだけでなく、衣服のサイズも正確に識別します。 2D 画像であるにもかかわらず、RC の時空間ダイナミクスを使用して、左手を振る、右手を振る、拍手のジェスチャーのイベントベースのビデオを 98.62% の精度で分類しました。
#図: DVSGesture128 データセットを使用したイベントベースのビデオ分類。 (出典: 論文)
ただし、この p-NDI トランジスタベースの RC には、シナプス有機電気化学トランジスタで広く使用されている液体電解質が含まれていないため、信頼性が向上します。操作性。この研究は、マルチタスク学習機能を備えた、ウェアラブルで手頃な価格の効率的なフォトニックニューロモーフィックシステムのための、有望な材料とアルゴリズムの共同設計戦略を提供します。
論文リンク: https://www.nature.com/articles/s41467-023-36205-9
以上が中国科学院と香港大学のチームは、低エネルギー消費と低消費時間を実現する新しい方法を使用して、ウェアラブルセンサーの内部貯留層計算のマルチタスク学習を実行します。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









WeChat のサイレント モードとはどういう意味ですか? 現在、スマートフォンの人気とモバイル インターネットの急速な発展により、ソーシャル メディア プラットフォームは人々の日常生活に欠かせないものとなっています。 WeChat は中国で最も人気のあるソーシャル メディア プラットフォームの 1 つであり、ほとんどの人が WeChat アカウントを持っています。私たちは WeChat を通じて友人、家族、同僚とリアルタイムでコミュニケーションを取り、生活の瞬間を共有し、お互いの現在の状況を理解することができます。しかし、この時代では、特に集中力や集中力が必要な人々にとって、情報過多やプライバシー漏洩の問題にも必然的に直面します。

上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

おやすみモードで電話に応答することさえ、非常に煩わしい経験になる可能性があります。名前が示すように、おやすみモードでは、すべての着信通知と電子メール、メッセージなどからの警告がオフになります。これらのソリューション セットに従って問題を修正できます。解決策 1 – フォーカス モードを有効にする 携帯電話でフォーカス モードを有効にします。ステップ 1 – 上から下にスワイプしてコントロール センターにアクセスします。ステップ 2 – 次に、携帯電話の「フォーカスモード」を有効にします。フォーカス モードでは、電話機のサイレント モードが有効になります。携帯電話に着信通知が表示されることはありません。解決策 2 – フォーカス モード設定を変更する フォーカス モード設定に問題がある場合は、修正する必要があります。ステップ 1 – iPhone の設定ウィンドウを開きます。ステップ 2 – 次に、フォーカス モード設定をオンにします

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58
