目次
メソッドの概要
実験結果
ホームページ テクノロジー周辺機器 AI ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

Apr 12, 2023 pm 04:49 PM
画像 モデル

マルチモーダル研究の重要な目標は、画像とテキストを理解するマシンの能力を向上させることです。特に、研究者は 2 つのモデル間で有意義なコミュニケーションを実現する方法について多大な努力を払ってきました。たとえば、画像キャプションの生成では、画像の意味内容を人間が理解できる一貫したテキストに変換できなければなりません。対照的に、テキスト画像生成モデルは、テキスト記述のセマンティクスを利用してリアルな画像を作成することもできます。

これは、セマンティクスに関連したいくつかの興味深い疑問につながります。特定の画像について、どのテキスト記述がその画像を最も正確に説明しているでしょうか?同様に、特定のテキストに対して、画像を実装する最も意味のある方法は何でしょうか?最初の質問に関して、いくつかの研究では、最適な画像の説明は自然であり、視覚的なコンテンツを復元できる情報であるべきだと主張しています。 2 番目の質問に関しては、意味のある画像は高品質で、多様性があり、テキストの内容に忠実である必要があります。

いずれにしても、人間のコミュニケーションによって推進される、テキスト-画像生成モデルおよび画像-テキスト生成モデルを含むインタラクティブなタスクは、最も正確な画像とテキストのペアを選択するのに役立ちます。

図 1 に示すように、最初のタスクでは、画像テキスト モデルが情報の送信者であり、テキスト画像モデルが情報の受信者です。送信者の目標は、自然言語を使用して画像の内容を受信者に伝え、受信者が言語を理解し、現実的な視覚表現を再構築できるようにすることです。受信機が元の画像情報を高い忠実度で再構築できれば、情報が正常に転送されたことになります。研究者らは、この方法で生成されたテキスト記述が最適であり、それによって生成された画像も元の画像に最も似ていると信じています。

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

このルールは、人々がコミュニケーションに使用する言語に基づいています。次のシナリオを想像してください。緊急通報の現場で、警察は電話を通じて交通事故と負傷者の状況を知りました。これには基本的に、現場の目撃者による画像説明のプロセスが含まれます。警察は適切な救助活動を組織するために、口頭での説明に基づいて環境現場を精神的に再構築する必要がある。明らかに、最良のテキストによる説明は、シーンを再構築するための最良のガイドとなるはずです。

2 番目のタスクにはテキストの再構築が含まれます。テキスト画像モデルがメッセージ送信者になり、画像テキスト モデルがメッセージ受信者になります。 2 つのモデルがテキスト レベルで情報の内容に同意すると、情報を伝えるために使用される画像媒体は、ソース テキストを再現する最適な画像になります。

この記事では、ミュンヘン大学、シーメンス、その他の機関の研究者によって提案された方法は、エージェント間のコミュニケーションに密接に関連しています。言語は、エージェント間で情報を交換するための主な方法です。しかし、最初のエージェントと 2 番目のエージェントが猫とは何か、犬とは何かについて同じ理解を持っているとどうやって確認できるのでしょうか?

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

論文アドレス: https://arxiv.org/pdf/2212.12249.pdf ##この記事で検討したいアイデアは、最初のエージェントに画像を分析させて画像を説明するテキストを生成させ、次に 2 番目のエージェントがテキストを取得して、それに基づいて画像をシミュレートするというものです。このうち、後者の処理が実施形態の処理といえる。この研究では、2 番目のエージェントによってシミュレートされた画像が最初のエージェントが受信した入力画像と類似している場合、コミュニケーションは成功すると考えられています (図 1 を参照)。

実験では、この研究では既製のモデル、特に最近開発された大規模な事前トレーニング済みモデルを使用しました。たとえば、Flamingo と BLIP は、画像に基づいてテキストの説明を自動的に生成できる画像説明モデルです。同様に、DALL-E モデルや潜在拡散モデル (SD) など、画像とテキストのペアでトレーニングされた画像生成モデルは、テキストの深い意味を理解し、高品質の画像を合成できます。

さらに、この調査では、CLIP モデルを利用して画像またはテキストを比較しました。 CLIP は、共有埋め込みスペースに画像とテキストをマッピングする視覚言語モデルです。この研究では、COCO や NoCaps などの手動で作成された画像テキスト データセットを使用して、生成されたテキストの品質を評価します。画像とテキストの生成モデルには、分布からのサンプリングを可能にする確率的コンポーネントがあり、候補となるテキストと画像の範囲から最適なものを選択します。画像記述モデルでは、カーネル サンプリングなどのさまざまなサンプリング方法を使用できます。この記事では、この記事で使用する方法の優位性を示すために、基本モデルとしてカーネル サンプリングを使用します。

メソッドの概要

この記事のフレームワークは、3 つの事前トレーニング済み SOTA ニューラル ネットワークで構成されています。 1 つ目は画像テキスト生成モデル、2 つ目はテキスト画像生成モデル、3 つ目は画像エンコーダーとテキスト エンコーダーで構成されるマルチモーダル表現モデルで、画像またはテキストをそれぞれ意味的埋め込みにマッピングできます。

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

#テキスト説明による画像再構築

図 2 左半分このセクションでは、画像再構成タスクは、言語を指示として使用してソース画像を再構成することであり、このプロセスの実装により、ソース シーンを説明する最適なテキストが生成されます。まず、ソース画像 x が BLIP モデルに供給されて、複数の候補テキスト y_k が生成されます。たとえば、レッサーパンダは森の中で葉っぱを食べます。生成されたテキスト候補のセットは C で示され、テキスト y_k が SD モデルに送信されて画像 x’_k が生成されます。ここで、x’_k はレッサーパンダに基づいて生成された画像を指します。続いて、CLIP 画像エンコーダを使用して、ソースおよび生成された画像 ( および ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合) から意味論的な特徴が抽出されます。 ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

次に、候補テキスト記述 y_s を見つける目的で、これら 2 つの埋め込みベクトル間のコサイン類似度が計算されます。つまり

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

ここで、 s はソース画像に最も近い画像インデックスです。

この研究では、CIDEr (画像記述メトリック) を使用し、人間の注釈を参照して最良のテキストを評価します。生成されるテキストの品質に興味があったため、この研究では、ほぼ同じ長さのテキストを出力するように BLIP モデルを設定しました。テキストの長さは伝達できる画像内の情報量と正の相関があるため、これにより比較的公平な比較が保証されます。この作業中、すべてのモデルはフリーズされ、微調整は実行されません。

#画像によるテキストの再構築

図 2 の右側は、前のセクションで説明したプロセスの逆を示しています。 BLIP モデルでは、SD によってガイドされたソース テキストを推測する必要があります。SD はテキストにアクセスできますが、そのコンテンツを画像の形式でレンダリングすることしかできません。このプロセスは、SD を使用してテキスト y の候補画像 x_k を生成することから始まり、結果として得られる候補画像のセットは K で示されます。 SD を使用した画像の生成にはランダム サンプリング プロセスが含まれ、各生成プロセスでは巨大なピクセル空間内で異なる有効な画像サンプルが生成される可能性があります。このサンプリングの多様性により、最良の画像をフィルタリングするための候補のプールが提供されます。次に、BLIP モデルは、サンプリングされた画像 x_k ごとにテキスト説明 y’_k を生成します。ここで、y’_k は最初のテキスト「森を這うレッサーパンダ」を指します。次に、この研究では、CLIP テキスト エンコーダを使用して、ソース テキストと生成されたテキストの特徴を抽出しました。これらは、それぞれ ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合 で表されます。このタスクの目的は、テキスト y のセマンティクスに一致する最適な候補画像 x_s を見つけることです。これを行うには、研究では生成されたテキストと入力テキストの間の距離を比較し、ペアになったテキストの間の距離が最も小さい画像、つまり

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

を選択する必要があります。

研究では、画像 x_s は最小限の情報損失でコンテンツを受信者に配信できるため、テキスト説明 y を最もよく表現できると考えています。さらに、この研究では、テキスト y に対応する画像 ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合 を y の参照プレゼンテーションとして扱い、最良の画像を参照画像への近さとして定量化します。

実験結果

図 3 の左のグラフは、2 つのデータセットにおける画像再構成の品質と説明テキストの品質の相関関係を示しています。特定の画像ごとに、再構成された画像の品質 (X 軸に表示) が向上するほど、テキスト記述の品質 (Y 軸に表示) も向上します。

図 3 の右のグラフは、復元されたテキストの品質と生成された画像の品質との関係を示しています。特定のテキストごとに、再構成されたテキストの説明 (x に表示) y 軸が良いほど)、画質も良くなります (y 軸に表示)。

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

# 図 4 (a) および (b) は、画像再構成品質と平均テキスト品質との関係を示しています。ソース画像上の関係。図 4(c) および (d) は、テキスト距離と再構成された画像品質の間の相関関係を示しています。

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合

#表 1 は、調査のサンプリング方法があらゆる指標においてカーネル サンプリングよりも優れていることを示しています。また、モデルの相対ゲインは次のとおりです。 7.7%にも達します。

ダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合# 図 5 は、2 つの再構成タスクの定性的な例を示しています。

以上がダルイーとフラミンゴは分かり合えるのか? 3 つの事前トレーニング済み SOTA ニューラル ネットワークが画像とテキストを統合の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

DualBEV: BEVFormer および BEVDet4D を大幅に上回る、本を開いてください! DualBEV: BEVFormer および BEVDet4D を大幅に上回る、本を開いてください! Mar 21, 2024 pm 05:21 PM

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。

See all articles