Generative AI により、DevOps チームは退屈な重複を排除し、自動化を強化し、複雑なワークフローを単純な会話アクションに圧縮できます。
生成 AI 用のコードを作成できる機能は、信じられないほどの価値をもたらします。会話の意図を階層化することで、よりアクセスしやすく便利になります。たとえば、チャット インターフェイスに短いメッセージを書き込むことで、AI エージェントに新しいプロジェクト、構成ファイル、または Terraform 状態定義をセットアップするように依頼できます。エージェントは、テンプレートのプレースホルダーに値を入力するよう求め、コンテンツをレビューする準備ができていることを適切な関係者に通知できます。
承認されると、AI は元の開発者に通知し、プロジェクトをライブ環境で起動し、展開を表示して反復を開始するためのリンクを提供します。これにより、開発者向けに、いくつかの異なるシーケンスが 1 つのセルフサービス操作に凝縮されます。運用チームは、プロジェクト リソースを事前に手動でプロビジョニングする必要がなくなり、自分たちのタスクに集中できるようになります。
次世代 AI エージェントは、単純なテキストや写真の作成を超えて、完全に自動化されたプロンプト主導型のワークフローをサポートします。たとえば、双方向 AI を使用すると、自然言語を使用して「本番クラスターの再起動」などのプロセスを開始し、AWS ECS リソースと対話できます。使用しているプラットフォームや実行する具体的な手順を AI に指示する必要はありません。たとえば、Kubiya.ai ではこれを最大限に活用し、自然言語プロンプトを通じて任意の DevOps ワークフローを作成するオプションをお客様に提供しています。
これらのエージェントの言語モデルは、クラウド サービスの語彙に基づいてトレーニングされます。クラスターの再起動を要求すると、エージェントはドメインの知識を使用してユーザーの言葉を解釈します。たとえば、「実稼働」クラスターが AWS で実行されていることを認識しているため、クラスターの詳細を取得し、ecs.UpdateService などの正しい API 呼び出しを実行してクラスターを再起動する必要があります。あなたの言葉は、完全に機能するワークフローに直接変換されます。
さらに、双方向の側面は、AI エージェントが時間の経過とともにより強力になることを意味します。ワークフローの実行を開始すると、エージェントもワークフローについてトレーニングを受け、将来のシナリオに対して同様のプロセスを提案し、各ワークフローが実際に行う内容を説明できるようになります。
このアプローチにより、開発者は運用チームに関与することなく、より多くのことを行うことができます。 AI エージェントは人間とインフラストラクチャ プラットフォームの間を仲介し、セキュリティを損なうことなく、誰でも一貫してワークフローを起動できるようにします。ワークフローの一部として、エージェントは、「新しい VM の追加」を依頼するときなど、関連する時点で入力を求めることができ、クラウド アカウント、データセンター リージョン、マシン タイプ、価格レベルの選択を求めます。
ジェネレーティブ AI の DevOps ユースケースは、アクセシビリティ、セキュリティ、信頼性を向上させながら、主要なタスクを加速します。さらに、開発者は使い慣れたプロセスを繰り返し実行して結果を待つのではなく、新機能の進歩に集中できるようになります。
会話を継続できるほど賢いエージェントは、チームのもう 1 人のメンバーのようなものです。これらは、組織のセキュリティおよびコンプライアンス ポリシーへの完全なコンプライアンスを確保しながら、特定のツールに不慣れな開発者にサポートを提供します。これらのセキュリティ対策によりコード ベースが保護され、開発者はあらゆるワークフローを開始できるという安心感が得られます。さらに、DevOps チームとのやり取りの数を減らすと、効率が向上し、フィードバック ループが強化されます。
生成 AI も静的なエクスペリエンスではありません。インタラクションを分析してユーザーの意図をより正確に判断するため、時間の経過とともに改善されます。たとえば、最初にクエリを入力したときに提案が適切でなかった場合、あなたや他の人がリクエストを繰り返し、さまざまなアクションを実行するにつれて改善されることが期待できます。
人工知能エージェントは、人間の不足している知識もサポートします。これにより、開発者は、関連する一部の手順、ツール、用語に慣れていない場合でも、プロセスを開始できます。 AI は、「どのインスタンスが失敗しましたか?」などの質問のギャップを埋めることができます。実稼働クラスター内の Kubernetes ポッドを参照していることを理解してください。これらの機能により、AI は人間の能力を効果的に補完し、チームを支援する手がかりの源となります。
AI を定期的に使用する組織は、エージェントがニーズをよりよく予測するため、最良の結果を達成する可能性が高くなります。ただし、ワークフローに AI を追加する場合は、やりすぎないことも重要です。最も成功した導入は、実際のビジネス ニーズの解決に重点を置いています。まず、プロセスを評価して開発チームと運用チームの間のボトルネックを特定し、次に AI を使用してそれらの繰り返しのユースケースをターゲットにします。
選択したソリューションは、より多くの問題を解決したり、インシデントをより迅速に解決したりするなど、KPI の達成に役立つものでなければなりません。そうしないと、AI エージェントが十分に活用されず、自然な操作手順が妨げられてしまいます。
生成 AI は、今日最も急速に成熟しているテクノロジーの 1 つです。その結果、より多くの研究者、消費者、組織がその機能を探索し始めたため、ChatGPT は一定レベルの普及を獲得しました。 DALL-E2 も同様に目覚ましい結果を達成し、最初の 12 か月間で 120 万人以上の開発者が GitHub Copilot を使用しました。
3 つのテクノロジはいずれも明らかな革命的な可能性を示していますが、長期的に最も恩恵を受ける可能性があるのは、DevOps のハイブリッドで非常に複雑なワークフローです。たとえば、DevOps では、コードや構成などの新しい資産の作成と、展開の承認やレビュー要求などの一連のプロセスが組み合わされます。
一部の部外者の予測に反して、DevOps 向けの生成 AI は、通常のファイル スニペットの単純なテンプレートを超えて、完全なワークフローの自動化を実現するでしょう。簡単な会話フレーズを使用して、新しいクラウド リソースのプロビジョニングから運用パフォーマンスのチェックまで、お客様に代わって特定のアクションを実行するようにエージェントに指示できます。その結果、エージェントはリアルタイムの双方向フィードバック ループを提供して、コラボレーションを改善し、生産性を向上させ、開発者が直面する日常のストレスを軽減します。
以上がDevOps 向けの生成 AI: 現実的な視点の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。