ホームページ テクノロジー周辺機器 AI 本番グレードの会話型 AI システムにおける ChatGPT の欠点

本番グレードの会話型 AI システムにおける ChatGPT の欠点

Apr 12, 2023 pm 07:16 PM
AI 開発する chatgp

翻訳者|Bugatti

レビュアー|Sun Shujuan

ChatGP は、その詳細で人間味あふれる文章による回答で世界中の注目を集め、以下について活発な議論が行われています。人々はこの人工知能(AI)とどのように対話すべきなのか。多くの点で、ChatGPT は以前の GPT-3.5 のアップグレード バージョンですが、依然として改ざんされる傾向があります。専門家らは、実稼働グレードのアプリケーションの場合、AI 開発者は ChatGPT を他のツールと組み合わせて完全なソリューションを実現することを検討する可能性があると述べています。

本番グレードの会話型 AI システムにおける ChatGPT の欠点

ChatGPT と GPT-3.5 は OpenAI によって開発され、Microsoft Azure でトレーニングされています。どちらも大規模な言語モデルに基づいた会話型 AI システムですが、大きな違いがあります。

まず第一に、Generative Pre-training Transformer (GPT) 3.5 は ChatGPT よりも早く登場し、そのニューラル ネットワークには ChatGPT よりも多くの層があります。 GPT-3.5 は、言語の翻訳、テキストの要約、質問への回答など、多くのタスクを処理できる汎用言語モデルとして開発されました。 OpenAI は GPT-3.5 用の API インターフェイスのセットを提供し、開発者がその機能にアクセスするためのより効率的な方法を提供します。

ChatGPT は GPT-3.5 に基づいており、特にチャットボットとして開発されています (「会話エージェント」は業界で好まれている用語です)。制限要因の 1 つは、ChatGPT にはテキスト インターフェイスのみがあり、API がないことです。 ChatGPT は、大規模な会話テキストのセットでトレーニングされており、GPT-3.5 や他の生成モデルよりも優れた会話を実行します。応答は GPT-3.5 よりも速く生成され、その応答はより正確です。

ただし、どちらのモデルも捏造される傾向があり、業界内で言うところの「幻覚」を示すものです。 ChatGPT の幻覚率は 15% ~ 21% です。同時に、GPT-3.5 の幻覚率は約 20% から 41% に増加したため、ChatGPT はこの点で改善されました。

シリコンバレーの企業 Moveworks は、自社の AI 会話プラットフォームで言語モデルやその他の機械学習技術を使用しており、幅広い業界の企業で使用されています。同社の創設者で機械学習担当副社長のジャン・チェン氏は、(すべての言語モデルに共通する問題である)作り話であることが多いが、ChatGPTは以前のAIモデルに比べて大幅に改善されていると述べた。

「ChatGPT は人々に本当に感銘を与え、驚かせました」と、テクノロジー巨人の名を冠した検索エンジンを開発した元 Google エンジニアのチェン氏は語ります。 「その推論機能は、多くの機械学習実務者を驚かせるかもしれません。」

Moveworks は、さまざまな言語モデルやその他の技術を使用して、クライアント向けにカスタマイズされた AI システムを構築しています。同社は、数年前に Google がオープンソース化した言語モデルである BERT の大ユーザーです。同社は GPT-3.5 を使用しており、すでに ChatGPT の使用を開始しています。

ただし、Chen 氏によると、ChatGPT には実稼働グレードの会話型 AI システムを構築する場合に限界があるそうです。このタイプのテクノロジーを使用してカスタムの会話型 AI システムを構築する場合は、さまざまな要素を考慮する必要があります。間違った答えを提供せず、過度に偏らず、適切な答えを提供しないシステムを構築するには、どこに線が引かれているかを知ることが重要です。人々をあまり長く待たせないシステム。

Chen 氏は、ChatGPT は、質問に答える意味のある応答を生成する点で BERT よりも優れていると述べました。具体的には、ChatGPT は、文内の次の単語を予測するように設計された BERT よりも強力な「推論」機能を備えています。

ChatGPT と GPT-3.5 は、質問に答えるための説得力のある応答を提供できますが、そのクローズドなエンドツーエンドの性質により、Chen のようなエンジニアがトレーニングを受けることができません。これは、業界固有の対応に合わせてコーパスをカスタマイズすることへの障壁にもなります (小売業者や製造業者は、法律事務所や政府とは異なる言葉を使用します)。この閉鎖的な性質が偏見を減らすことをさらに困難にしている、と同氏は述べた。

BERT は、Moveworks のような企業がホストできるほど小規模です。同社は、企業固有のデータを収集し、そのデータをトレーニング用の BERT モデルにフィードするデータ パイプラインを構築しました。この取り組みにより、Moveworks は、GPT-3.5 や ChatGPT のようなクローズド システムでは不可能な、最終的な会話型 AI 製品をより高度に制御できるようになります。

#当社の機械学習スタックは階層化されており、「当社では BERT を使用していますが、他の機械学習アルゴリズムも使用しているため、顧客固有のロジックや顧客固有のデータを組み込むことができます。」とチェン氏は述べました。 OpenAI モデルははるかに大規模で、はるかに大規模なコーパスでトレーニングされていますが、特定の顧客に適しているかどうかを知る方法はありません。

彼は次のように述べています。「(ChatGPT) モデルは、そこに供給されるすべての知識をエンコードするように事前にトレーニングされています。それ自体は特定のタスクを実行するように設計されていません。それが加速し、急速な成長を達成できる理由これは、アーキテクチャ自体が実際には非常にシンプルであるという事実によるものです。同じものが何層にも重ねられているため、すべてがいわば融合しています。このアーキテクチャのおかげで、学習能力があることはわかっていますが、実際にはそうではありません」

Chen 氏は、ChatGPT には一時的な効果があるかもしれないと考えていますが、会話型 AI の実稼働グレードのツールとしての有用性は少し誇張されている可能性があります。より良いアプローチは、特定の 1 つのモデルに完全にコミットするのではなく、複数のモデルの強みを活用して、クライアントのパフォーマンス、精度、バイアスの期待、およびテクノロジーの基礎的な機能とより適切に連携することです。

彼はこう言いました。「私たちの戦略は、さまざまな場所で一連の異なるモデルを使用することです。大きなモデルを使用して小さなモデルを教えることができます。そうすれば、小さなモデルははるかに優れたものになるでしょう」より高速です。たとえば、セグメント化された検索を実行したい場合は、ある種の BERT モデルを使用し、それをある種のベクトル検索エンジンとして実行する必要があります。ChatGPT はこれには大きすぎます。」

現時点では、ChatGPT は現実世界のアプリケーションでの使用が限られているかもしれませんが、それは重要ではないという意味ではありません。 ChatGPT がもたらす永続的な影響の 1 つは、実践者の注目を集め、将来の会話型 AI テクノロジーの有効性の限界に挑戦するよう人々を鼓舞することである、とチェン氏は述べました。

彼は次のように言いました。「これによって新たな分野が開かれると思います。今後、ブラック ボックスをオープンにしていくと、さらに興味深い方法や応用が生まれると思います。これが私たちが楽しみにしていることです。私たちはこの分野の研究開発に取り組んでいます。」

原題: 生産会話型 AI システムにおける ChatGPT の欠点 、著者: Alex Woodie

以上が本番グレードの会話型 AI システムにおける ChatGPT の欠点の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 Jul 15, 2024 pm 12:21 PM

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

See all articles