目次
1. Excel データを処理する Python
7、Python控制键盘
8、Python压缩文件
9、Python爬取网络数据
10、Python处理图片图表
小结
ホームページ バックエンド開発 Python チュートリアル Python オフィス オートメーションのトップ 10 のシナリオをご存知ですか?

Python オフィス オートメーションのトップ 10 のシナリオをご存知ですか?

Apr 12, 2023 pm 09:55 PM
python オフィスオートメーション

プログラミングの世界では、Python はすでにインターネット上の有名人です。かつて、中国語を勉強している大学院生が、Python の学習方法を私に尋ねました。その授業レポートでは、テキスト分析を使用し、Python を使用してデータを実行する必要があったからです。 2日以内に文法を読めば仕事を始められるよ、分からないなら調べてね、と伝えました。その後、この同級生はPythonを使って半月で紙データを完成させました。

つまり、Python の最大の利点は、学習が容易であり、Java や C よりも敷居がはるかに低いことです。Python は、プログラマーでない人でもコードを操作できる可能性を提供します。もちろん、Python が人気のプログラミング ツールになる可能性があります。これは、学習が簡単であるだけでなく、Python にはあらゆる分野に広がる何千ものツールキットがあるためでもあります。

Python オフィス オートメーションのトップ 10 のシナリオをご存知ですか?

官公庁の一般的な例を 12 個挙げると、Python はそれらを効率的に処理できます。

1. Excel データを処理する Python

#pandas、xlwings、openpyxl およびその他のパッケージを使用して、追加、削除、変更、確認、フォーマット、調整などを行うことができます。 Excel. Python 関数を使用して Excel データを分析することもできます。

Python オフィス オートメーションのトップ 10 のシナリオをご存知ですか?

Excel テーブルの読み取り:

import xlwings as xw
wb = xw.Book()# this will create a new workbook
wb = xw.Book('FileName.xlsx')# connect to a file that is open or in the current working directory
wb = xw.Book(r'C:pathtofile.xlsx')# on Windows: use raw strings to escape backslashes
ログイン後にコピー

matplotlib 図面を Excel テーブルに書き込み:

import matplotlib.pyplot as plt
import xlwings as xw

fig = plt.figure()
plt.plot([1, 2, 3])

sheet = xw.Book().sheets[0]
sheet.pictures.add(fig, name='MyPlot', update=True)
ログイン後にコピー

Python オフィス オートメーションのトップ 10 のシナリオをご存知ですか?

2. Python による PDF テキストの処理

PDF はほぼ最も一般的なテキスト形式であり、多くの人が PDF を処理するためにさまざまなニーズを持っています。 PDF の作成、テキストの取得、写真の取得、表の取得など。 Python には、これらのニーズを簡単に満たす PyPDF、pdfplumber、ReportLab、PyMuPDF などのパッケージがあります。

Python オフィス オートメーションのトップ 10 のシナリオをご存知ですか?

PDF テキストの抽出:

import PyPDF2
pdfFile = open('example.pdf','rb')
pdfReader = PyPDF2.PdfFileReader(pdfFile)
print(pdfReader.numPages)
page = pdfReader.getPage(0)
print(page.extractText())
pdfFile.close()
ログイン後にコピー

PDF テーブルの抽出:

# 提取pdf表格
import pdfplumber
with pdfplumber.open("example.pdf") as pdf:
page01 = pdf.pages[0] #指定页码
table1 = page01.extract_table()#提取单个表格
# table2 = page01.extract_tables()#提取多个表格
print(table1)
ログイン後にコピー

3. Python のメール処理

Python ではメールライブラリと smtplib を併用することでメールの自動送信が実現でき大変便利です。

import smtplib
import email
# 负责将多个对象集合起来
from email.mime.multipart import MIMEMultipart
from email.header import Header
# SMTP服务器,这里使用163邮箱
mail_host = "smtp.163.com"
# 发件人邮箱
mail_sender = "******@163.com"
# 邮箱授权码,注意这里不是邮箱密码,如何获取邮箱授权码,请看本文最后教程
mail_license = "********"
# 收件人邮箱,可以为多个收件人
mail_receivers = ["******@qq.com","******@outlook.com"]
mm = MIMEMultipart('related')
# 邮件正文内容
body_content = """你好,这是一个测试邮件!"""
# 构造文本,参数1:正文内容,参数2:文本格式,参数3:编码方式
message_text = MIMEText(body_content,"plain","utf-8")
# 向MIMEMultipart对象中添加文本对象
mm.attach(message_text)
# 创建SMTP对象
stp = smtplib.SMTP()
# 设置发件人邮箱的域名和端口,端口地址为25
stp.connect(mail_host, 25)
# set_debuglevel(1)可以打印出和SMTP服务器交互的所有信息
stp.set_debuglevel(1)
# 登录邮箱,传递参数1:邮箱地址,参数2:邮箱授权码
stp.login(mail_sender,mail_license)
# 发送邮件,传递参数1:发件人邮箱地址,参数2:收件人邮箱地址,参数3:把邮件内容格式改为str
stp.sendmail(mail_sender, mail_receivers, mm.as_string())
print("邮件发送成功")
# 关闭SMTP对象
stp.quit()
ログイン後にコピー

4. Python 処理データベース

データベースは私たちの一般的なオフィス アプリケーションです。Python にはさまざまなデータベース ドライバー インターフェイス パッケージがあり、追加、削除、変更をサポートしています。データベースのクエリや運用保守管理業務たとえば、pymysql パッケージは MySQL に対応し、psycopg2 パッケージは PostgreSQL に対応し、pymssql パッケージは sqlserver に対応し、cxoracle パッケージは Oracle に対応し、PyMongo パッケージは MongoDB に対応します。

MySQL への接続クエリ

import pymysql
# 打开数据库连接
db = pymysql.connect(host='localhost',
 user='testuser',
 password='test123',
 database='TESTDB') 
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = db.cursor()
# 使用 execute()方法执行 SQL 查询 
cursor.execute("SELECT VERSION()")
# 使用 fetchone() 方法获取单条数据.
data = cursor.fetchone()
print ("Database version : %s " % data)
# 关闭数据库连接
db.close()
ログイン後にコピー

5. バッチ ファイルの Python 処理

多くのオフィス シナリオでは、ファイルのバッチ処理は常に汚い仕事であり、Python はその仕事から抜け出すのに役立ちます。 Python には、sys、os、shutil、glob、path.py など、システム ファイルを処理するパッケージが多数あります。

異なるフォルダーにある同じ名前のフォルダーを一括で削除:

import os,shutil
import sys
import numpy as np
def arrange_file(dir_path0):
for dirpath,dirnames,filenames in os.walk(dir_path0):
if 'my_result' in dirpath:
# print(dirpath)
shutil.rmtree(dirpath)
ログイン後にコピー

ファイルのサフィックスを一括で変更:

import os
def file_rename():
path = input("请输入你需要修改的目录(格式如'F:\test'):")
old_suffix = input('请输入你需要修改的后缀(需要加点.):')
new_suffix = input('请输入你要改成的后缀(需要加点.):')
file_list = os.listdir(path)
for file in file_list:
old_dir = os.path.join(path, file)
print('当前文件:', file)
if os.path.isdir(old_dir):
continue
if old_suffix != os.path.splitext(file)[1]:
continue
filename = os.path.splitext(file)[0]
new_dir = os.path.join(path, filename + new_suffix)
os.rename(old_dir, new_dir)
if __name__ == '__main__':
file_rename()
ログイン後にコピー

6. Python 制御マウス

これは、マウスの自動制御を実現し、ソフトウェア テストなどの組立ライン作業を行うために、多くの人が必要としています。

Python には、マウスを任意に制御できる pyautogui ライブラリがあります。

マウスの左クリック/右クリック/ダブルクリック機能を制御し、ソース コードをテストします:

# 获取鼠标位置
import pyautogui as pg
try:
while True:
x, y = pg.position()
print(str(x) + " " + str(y))#输出鼠标位置
 
if 1746 < x < 1800 and 2 < y < 33:
pg.click()#左键单击
if 1200 < x < 1270 and 600 < y < 620:
pg.click(button='right')#右键单击
if 1646 < x < 1700 and 2 < y < 33:
pg.doubleClick()#左键双击
except KeyboardInterrupt:
print("n")
ログイン後にコピー

7、Python控制键盘

同样的,Python也可以通过pyautogui控制键盘。

键盘写入:

import pyautogui
#typewrite()无法输入中文内容,中英文混合的只能输入英文
#interval设置文本输入速度,默认值为0
pyautogui.typewrite('你好,world!',interval=0.5)
ログイン後にコピー

8、Python压缩文件

压缩文件是办公中常见的操作,一般压缩会使用压缩软件,需要手动操作。

Python中有很多包支持文件压缩,可以让你自动化压缩或者解压缩本地文件,或者将内存中的分析结果进行打包。比如zipfile、zlib、tarfile等可以实现对.zip、.rar、.7z等压缩文件格式的操作。

压缩文件:

import zipfile
try:
with zipfile.ZipFile("c://test.zip",mode="w") as f:
f.write("c://test.txt")#写入压缩文件,会把压缩文件中的原有覆盖
except Exception as e:
print("异常对象的类型是:%s"%type(e))
print("异常对象的内容是:%s"%e)
finally:
f.close()
ログイン後にコピー

解压文件:

import zipfile
try:
with zipfile.ZipFile("c://test.zip",mode="a") as f:
 f.extractall("c://",pwd=b"root") ##将文件解压到指定目录,解压密码为root
except Exception as e:
 print("异常对象的类型是:%s"%type(e))
 print("异常对象的内容是:%s"%e)
finally:
 f.close()
ログイン後にコピー

9、Python爬取网络数据

python爬虫应该是最受欢迎的功能,也是广大Python爱好者们入坑的主要的原因。

Python中有非常多的包支持爬虫,而爬虫包又分为抓取、解析两种。

比如说requests、urllib这种是网络数据请求工具,也就是抓取包;xpath、re、bs4这种会对抓取下来的网页内容进行解析,称为解析包。

爬取百度首页图片,并保存到本地:

# 导入urlopen
from urllib.request import urlopen
# 导入BeautifulSoup
from bs4 import BeautifulSoup as bf
# 导入urlretrieve函数,用于下载图片
from urllib.request import urlretrieve
# 请求获取HTML
html = urlopen("http://www.baidu.com/")
# 用BeautifulSoup解析html
obj = bf(html.read(),'html.parser')
# 从标签head、title里提取标题
title = obj.head.title
# 只提取logo图片的信息
logo_pic_info = obj.find_all('img',class_="index-logo-src")
# 提取logo图片的链接
logo_url = "https:"+logo_pic_info[0]['src']
# 使用urlretrieve下载图片
urlretrieve(logo_url, 'logo.png')
ログイン後にコピー

10、Python处理图片图表

图片处理、图表可视化涉及到图像处理,这也是Python的强项,现在诸如图像识别、计算机视觉等前沿领域也都会用到Python。

在Python中处理图像的包有scikit Image、PIL、OpenCV等,处理图表的包有matplotlib、plotly、seaborn等。

对图片进行黑白化处理:

from PIL import Image
from PIL import ImageEnhance
img_main = Image.open(u'E:/login1.png')
img_main = img_main.convert('L')
threshold1 = 138
table1 = []
for i in range(256):
if i < threshold1:
table1.append(0)
else:
table1.append(1)
img_main = img_main.point(table1, "1")
img_main.save(u'E:/login3.png')
ログイン後にコピー

生成统计图表:

import numpy as np
import matplotlib.pyplot as plt
N = 5
menMeans = (20, 35, 30, 35, 27)
womenMeans = (25, 32, 34, 20, 25)
menStd = (2, 3, 4, 1, 2)
womenStd = (3, 5, 2, 3, 3)
ind = np.arange(N)# the x locations for the groups
width = 0.35 # the width of the bars: can also be len(x) sequence
p1 = plt.bar(ind, menMeans, width, yerr=menStd)
p2 = plt.bar(ind, womenMeans, width,
 bottom=menMeans, yerr=womenStd)
plt.ylabel('Scores')
plt.title('Scores by group and gender')
plt.xticks(ind, ('G1', 'G2', 'G3', 'G4', 'G5'))
plt.yticks(np.arange(0, 81, 10))
plt.legend((p1[0], p2[0]), ('Men', 'Women'))
plt.show()
ログイン後にコピー

小结

总之Python会成为大众化的编程语言,帮助到更多需要的人。

以上がPython オフィス オートメーションのトップ 10 のシナリオをご存知ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Debian Apacheログを使用してWebサイトのパフォーマンスを向上させる方法 Debian Apacheログを使用してWebサイトのパフォーマンスを向上させる方法 Apr 12, 2025 pm 11:36 PM

この記事では、Debianシステムの下でApacheログを分析することにより、Webサイトのパフォーマンスを改善する方法について説明します。 1.ログ分析の基本Apacheログは、IPアドレス、タイムスタンプ、リクエストURL、HTTPメソッド、応答コードなど、すべてのHTTP要求の詳細情報を記録します。 Debian Systemsでは、これらのログは通常、/var/log/apache2/access.logおよび/var/log/apache2/error.logディレクトリにあります。ログ構造を理解することは、効果的な分析の最初のステップです。 2。ログ分析ツールさまざまなツールを使用してApacheログを分析できます。コマンドラインツール:GREP、AWK、SED、およびその他のコマンドラインツール。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

PHPとPython:2つの一般的なプログラミング言語を比較します PHPとPython:2つの一般的なプログラミング言語を比較します Apr 14, 2025 am 12:13 AM

PHPとPythonにはそれぞれ独自の利点があり、プロジェクトの要件に従って選択します。 1.PHPは、特にWebサイトの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンス、機械学習、人工知能に適しており、簡潔な構文を備えており、初心者に適しています。

Debian Readdirが他のツールと統合する方法 Debian Readdirが他のツールと統合する方法 Apr 13, 2025 am 09:42 AM

DebianシステムのReadDir関数は、ディレクトリコンテンツの読み取りに使用されるシステムコールであり、Cプログラミングでよく使用されます。この記事では、ReadDirを他のツールと統合して機能を強化する方法について説明します。方法1:C言語プログラムを最初にパイプラインと組み合わせて、cプログラムを作成してreaddir関数を呼び出して結果をinclude#include#include inctargc、char*argv []){dir*dir; structdireant*entry; if(argc!= 2){(argc!= 2){

DDOS攻撃検出におけるDebianスニファーの役割 DDOS攻撃検出におけるDebianスニファーの役割 Apr 12, 2025 pm 10:42 PM

この記事では、DDOS攻撃検出方法について説明します。 「DebiansNiffer」の直接的なアプリケーションのケースは見つかりませんでしたが、次の方法はDDOS攻撃検出に使用できます:効果的なDDOS攻撃検出技術:トラフィック分析に基づく検出:突然のトラフィックの成長、特定のポートの接続の急増などのネットワークトラフィックの異常なパターンの識別。たとえば、PysharkライブラリとColoramaライブラリと組み合わせたPythonスクリプトは、ネットワークトラフィックをリアルタイムで監視し、アラートを発行できます。統計分析に基づく検出:データなどのネットワークトラフィックの統計的特性を分析することにより

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Nginx SSL証明書更新Debianチュートリアル Nginx SSL証明書更新Debianチュートリアル Apr 13, 2025 am 07:21 AM

この記事では、DebianシステムでNGINXSSL証明書を更新する方法について説明します。ステップ1:最初にCERTBOTをインストールして、システムがCERTBOTおよびPython3-Certbot-Nginxパッケージがインストールされていることを確認してください。インストールされていない場合は、次のコマンドを実行してください。sudoapt-getupdatesudoapt-getinstolcallcertbotthon3-certbot-nginxステップ2:certbotコマンドを取得して構成してlet'sencrypt証明書を取得し、let'sencryptコマンドを取得し、nginx:sudocertbot - nginxを構成します。

DebianのGitlabのプラグイン開発ガイド DebianのGitlabのプラグイン開発ガイド Apr 13, 2025 am 08:24 AM

DebianでGitLabプラグインを開発するには、特定の手順と知識が必要です。このプロセスを始めるのに役立つ基本的なガイドを以下に示します。最初にgitlabをインストールすると、debianシステムにgitlabをインストールする必要があります。 GitLabの公式インストールマニュアルを参照できます。 API統合を実行する前に、APIアクセストークンを取得すると、GitLabのAPIアクセストークンを最初に取得する必要があります。 gitlabダッシュボードを開き、ユーザー設定で「アクセストーケン」オプションを見つけ、新しいアクセストークンを生成します。生成されます

See all articles