目次
量子化の難易度をアクティベーションから重みに移す" >量子化の難易度をアクティベーションから重みに移す
実験部分
ホームページ テクノロジー周辺機器 AI 100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

Apr 13, 2023 am 09:31 AM
パラメータ モデル

大規模言語モデル (LLM) は優れたパフォーマンスを持っていますが、パラメータの数は簡単に数千億、数千億に達する可能性があり、コンピューティング機器やメモリの需要が非常に大きいため、一般の企業にはそれを賄うことができません。

量子化は一般的な圧縮操作です。モデルの重みの精度を下げることにより (32 ビットから 8 ビットへなど)、推論速度の高速化と引き換えにモデルのパフォーマンスの一部が犠牲になり、メモリの使用量が減ります。要件。

しかし、1,000 億を超えるパラメーターを持つ LLM の場合、既存の圧縮方法ではモデルの精度を維持できず、ハードウェア上で効率的に実行することもできません。

最近、MIT と NVIDIA の研究者は、汎用ポストトレーニング量子化 (GPQ、汎用ポストトレーニング量子化) ソリューション SmoothQuant を共同で提案しました。大規模な言語モデル、8 ビットの重みおよび 8 ビットのアクティベーション (W8A8) 定量化を効率的に実現でき、トレーニングなしでモデルの精度を維持できます。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

紙のリンク: https://arxiv.org/pdf/2211.10438.pdf

##コードリンク: https://github.com/mit-han-lab/smoothquant

アクティベーションは重みよりも定量化するのが難しいため、 SmoothQuant は、定量化が難しいアクティベーションを数学的等価変換を通じて重みに変換し、アクティベーション外れ値のスムーズな処理を実現します。

SmoothQuant は、OPT-175B、BLOOM-176B、GLM-130B を含む、すべての LLM のさまざまなレイヤーの重みとアクティベーションを INT8 に量子化できます。

重みの最適化のみを実行するか、混合精度でアクティベーションを量子化する既存の方法と比較して、

SmoothQuant はハードウェア効率が高く、1.56 倍の高速化を実現します。メモリ要件はわずか半分です。オリジナルの LLM をそのまま使用しているため、精度がほとんど失われません。

SmoothQuant はハードウェア フレンドリーな設計でもあり、研究者らは SmoothQuant を LLM サービス フレームワーク FasterTransformer に統合して、より高速な推論速度を実現しました。 FP16 の場合、必要な GPU の数は半分だけです。 100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

講師の Song Han は、MIT EECS の准教授です。スタンフォード大学で博士号を取得して卒業しました。彼の主な研究方向は効率的な深層学習です。彼はかつて、深層圧縮技術を提案しました。ニューラル ネットワークを次のように変換します。精度を損なうことなく、サイズが 1 桁減少します。

SmoothQuant

量子化 (Quantization) は、高精度の値を低精度の離散値にマッピングすることです。この論文では、研究者は主にハードウェアの効率性の向上に焦点を当てています。整数の一様量子化、特に INT8。

量子化操作は、テンソルごとの量子化が重み行列全体に適用され、トークンごとの量子化が重み行列全体に適用されるなど、さまざまな粒度で実行できます。トークンごとに、チャネルごとの量子化が重みの各出力チャネルに適用されます。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

#活性化の定量的結果を観察することにより、研究者らはいくつかのパターンを結論付けました:

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。


#1. 定量化は重量よりも困難です。

重みの分布は比較的均一で平坦です。以前の研究結果では、大規模な言語モデルの重みを INT8 または INT4 に削減しても、精度にはほとんど影響がないことが証明されています。

#2. 外れ値は、アクティベーションの定量化における主な困難です。

#アクティベーションにおける外れ値は通常、通常の値よりも約 100 倍高く、その結果、外れ値のないチャネルでは量子化ビット/レベルの効率が非常に低くなります。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

3. 特定のチャンネルで異常値が修正されました。

外れ値は少数のチャネルにのみ表示されますが、1 つのチャネルに外れ値がある場合、その外れ値はトークン内のすべてのチャネルに表示される可能性があります。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

特定のトークン内のすべてのチャネルの分散は大きくなります (一部のチャネルは非常に大きくなりますが、ほとんどのチャネルは小さくなります)。すべてのトークン次数にわたるチャネルの分散は小さくなります (外れ値チャネルは大きくなります)。

外れ値は各チャネル内で連続的に発生し、分散が小さいという特性があるため、アクティベーションに対してチャネルごとの量子化が実行される場合、量子化誤差はテンソルごとの量子化よりもはるかに小さくなります。

簡単な実験を通じて、結果は研究者のアイデアを再度検証しました。INT8 に量子化すると、チャネルごとの精度はテンソルごとやトークンごとよりもはるかに高くなります。 、精度は FP16 ベースラインとほぼ同じです。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

研究者らは、チャネルごとの平滑化係数 s を使用して入力のアクティブ化を平滑化しました。線形層の数学的等価性を維持するには、重みを逆スケールする必要もあります。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

入力 X は通常、前の線形演算 (線形層、層ノルムなど) によって生成されるため、簡単に平滑化係数はオフラインで前のレイヤーのパラメーターにブレンドされ、追加のスケーリングによるカーネル呼び出しのオーバーヘッドは発生しません。入力が残差加算からのものである場合など、他のケースでは、追加のスケーリングを残差ブランチに追加できます。

量子化の難易度をアクティベーションから重みに移す

Smooth の目標は、逆演算が行われるようにチャネルごとの平滑化係数を選択することです。数値化しやすいです。

量子化誤差を減らすには、すべてのチャネルの実効量子化ビットを増やす必要があります。すべてのチャネルの最大の大きさが同じである場合、有効な量子化ビットの総数は最大になります。

したがって、最も直接的な平滑化係数の選択の 1 つは、入力内の各チャネルの最大値です。これにより、除算後にすべてのアクティベーション チャネルが同じ最大値を持つことが保証され、定量化が容易になります。

ただし、アクティベーション範囲は動的であり、入力サンプルごとに異なることに注意してください。そこで研究者らは、事前トレーニング データセットからのキャリブレーション サンプルを使用して、活性化チャネルのサイズを推定しました。

この式はすべての定量化の困難さを重みに移すため、この場合、重みの量子化誤差が非常に大きくなり、精度が大幅に低下することがわかります。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

一方、 sj = 1/ max(|Wj |) を選択することで、重み付けからアクティベーションまですべての量子化の困難をプッシュすることも可能です。同様に、過剰なアクティベーション量子化エラーにより、モデルのパフォーマンスも低下します。したがって、ウェイトとアクティベーションの両方を簡単に定量化できるように、定量化の難易度を分割する必要があります。

研究者らは、アクティベーションからウェイトへの転送の難しさを制御するために、ハイパーパラメータ転送強度 α を導入しました。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

OPT モデルや BLOOM モデルなどのほとんどのモデルでは、α=0.5 が適切なバランス ポイントであり、特に同じ量子化器を使用する場合、量子化の難易度を均等に分散できることがわかります。重み付けとアクティブ化を実行します。

この式により、対応するチャネルの重みとアクティベーションが同様の最大値を持つことが保証され、したがって同じ量子化難易度が共有されます。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

30% の外れ値を持つ GLM-130B など、アクティベーションの外れ値が比較的大きい他のモデルの場合は、アクティベーションの定量化がより困難なので、より大きな A ラージを選択できます。 α (0.75 など) を指定すると、定量化の難易度が重みに反映されます。

SmoothQuant は Transformer ブロックに適用されます

線形層は、LLM モデルのパラメーターと計算の大部分を占めます。デフォルトでは、SmoothQuant は、Transformer 内のすべての線形レイヤーの入力アクティベーションをスケーリングし、W8A8 で線形レイヤーを量子化します。これにより、アテンション計算における BMM オペレーターの量子化が可能になります。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

このプロセスでは、最初に INT8 を使用して、線形層とアテンション層の BMM などの計算量の多い演算子の入力と重みを定量化します。一方、大きさに関する他の軽い演算は、 Softmax や LayerNorm などの要素は FP16 としてアクティブ化されたままになり、この設計は精度と推論効率のバランスをとるのに役立ちます。

実験部分

研究者らは、SmoothQuant を評価するために OPT、BLOOM、GLM-130B を含む 3 つの大規模言語モデルを選択し、LAMBADA、HellaSwag、PIQA を含む 7 つのゼロショット タスクを使用しました。 、WinoGrande、OpenBookQA、RTE、COPA など。

実験結果は、SmoothQuant が非常に大きな LLM の量子化問題を処理できること、そしてその活性化を定量化することがより難しいことを示しています。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

SmoothQuant はすべての評価データセットで FP16 の精度と一致しますが、W8A8、ZeroQuant、および外れ値抑制ベースラインはほぼランダムな結果を生成します。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

そして、SmoothQuant は、100B を超えるパラメーターを持つすべてのオープン LLM をロスレスで量子化できます。

SmoothQuant の O1 および O2 レベルは、浮動小数点精度を維持することに成功していますが、レベル O3 ( -tensor static) は平均精度を 0.8% 低下させます。これは、おそらく静的に収集された統計と実際の評価サンプルの活性化統計との違いが原因です。

それにもかかわらず、SmoothQuant-O1 は FP16 の精度に匹敵することができますが、SmoothQuant-O3 は精度を 1% 低下させるだけであり、ベースラインよりも大幅に優れています。

SmoothQuant は、100B を超えるパラメータを持つ非常に大規模な LLM に効果的であるだけでなく、より小さな LLM に対しても安定した結果をもたらします。SmoothQuant は、OPT モデルのすべてのスケールで動作し、INT8 量子化の FP16 精度と一致します。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

PyTorch と FasterTransformer に統合された SmoothQuant-O3 の速度向上とメモリ節約を実証するために、一度に 4 文のバッチを生成するすべての隠れ状態を測定しました。エンドまでの遅延、つまりコンテキスト ステージでの遅延を測定し、このプロセス中のピーク GPU メモリ使用量を記録します。

Huggingface ではモデルの並列処理がサポートされていないため、研究者は単一 GPU 上で SmoothQuant の PyTorch 実装のパフォーマンスのみを測定したため、OPT-6.7B、OPT-13B、および OPT-30B が評価用に選択されました。

FasterTransformer ライブラリでは、SmoothQuant を Tensor Parallelism アルゴリズムにシームレスに接続できるため、研究者は SmoothQuant のシングル GPU およびマルチ GPU ベンチマークを OPT-13B、OPT-30B、OPT-66B、および OPT- でテストしました。 175B. .

NVIDIA A100 80GB GPU サーバーで実施された実験結果は、OPT-30B でシーケンス長が 256 の場合、PyTorch 実装に基づく推論レイテンシとピーク メモリ使用量の点で、SmoothQuant が常に FP16 ベースラインより高速であることを示しています。 1.51倍の高速化を実現しました。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

また、モデルが大きくなるほど明らかに高速化する傾向が見られますが、LLM.int8() はほとんどの場合、FP16 ベースラインよりも遅くなります。混合精度への変換 表現をアクティブにする際の膨大なオーバーヘッドが原因で発生します。

メモリに関しては、SmoothQuant と LLM.int8() はどちらも FP16 モデルのメモリ使用量をほぼ半分にできますが、SmoothQuant は完全に INT8 GEMM を使用するため、メモリの節約がわずかに多くなります。

100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。

FasterTransformer の OPT FP16 実装と比較すると、SmoothQuant-O3 は、単一 GPU 使用時の OPT-13B および OPT-30B の実行レイテンシーをさらに最大 1.56 削減できます。回。


以上が100億個のパラメータを持つ言語モデルは実行できないのでしょうか? MIT の中国人医師が SmoothQuant 定量化を提案しました。これにより、メモリ要件が半分に減り、速度が 1.56 倍向上しました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Apr 29, 2024 pm 04:55 PM

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

See all articles