AI データ、伝統的な取引、現代の投資
人工知能テクノロジーは、投資家がリスクを大幅に軽減し、リターンを最大化するのに役立ちます。
人工知能は金融の未来に革命をもたらします。昨年、金融機関は人工知能に 101 億ドル以上を投資しました。人工知能が金融分野で役割を果たしているさまざまな方法の 1 つは、投資家のエクスペリエンスを向上させることです。
現代の投資家の取引体験は、以前の投資家よりもはるかにスムーズになっています。インターネットの発明のおかげで、取引から包括的なレポートのダウンロードまでをほぼ瞬時に行うことができます。以前は数週間かかっていた作業が数分で完了するようになり、これは間違いなく次世代の若い投資家を勇気づけています。これは、人工知能が金融業界を変えるさまざまな方法の 1 つにすぎません。
しかし、イノベーションは決して止まらないため、現代の投資環境は変化し続けています(今回は人工知能の導入により)。それにもかかわらず、AI 全体としてはまだ初期段階にあるテクノロジーであり、仕様や普遍的な標準はありません。現代のトレーディングの世界に人工知能と人工知能データを導入することは本当にメリットをもたらしますか? この記事では、それを明らかにすることを目的としています!
従来の手法への疑問
市場は常に変化しており、どのようなものであるかプロのアナリストの多くが市場の研究でキャリアを築いているのはこのためです。これらの傾向を分析、特定、予測することで、アナリストはリスクを最小限に抑えながらクライアントが高い利益を享受できるよう支援できます。この点で、人工知能は投資家に大きく役立ちます。ある程度、価格は一般の人々の交流や資産の価値の認識によって部分的に決まります。人間のアナリストは、これらの感情的な反応を株価予測に組み込み、傾向データと組み合わせて比較的正確な分析を行うことができます。ただし、これらの計算には時間がかかり、人間は間違いを犯しやすいため、必ずしも正確であるとは限りません。残念ながら、同じ傾向であってもアナリストによって解釈が異なる場合があります。
最新の手法
現代のアナリストは、すべての計算を紙とペンで行うのではなく、さまざまなツールを利用します。アナリストや投資家を支援し、短期間で大量のデータを収集できるように設計されたさまざまなソフトウェア ソリューションが多数あります。これらのプログラムは多くの場合、折れ線グラフやローソク足グラフなど、さまざまな方法でデータを表現できるため、データの操作が容易になります。それでも、データを手動で分析するのは、ソフトウェア ソリューションを利用したとしても、多少時間がかかる場合があります。そのため、多くの企業が AI データを投資戦略に適用し始めています。
ロボアドバイザーの台頭
長年にわたり、多くの金融専門家が早期投資という考えを推進してきましたが、実際に投資を始めるには多大な努力が必要です。株やその他の資産がオンライン ブローカーを通じて購入できるようになった後でも、安定した利益を得るには株式市場についてある程度の理解が必要でした。幸いなことに、最初のロボアドバイザーは 2008 年に誕生しました。
ロボアドバイザーは、一般向けの投資を簡素化するユニークなサービスです。個人投資をしたり、市場を分析したり、積極的に取引したりする代わりに、ユーザーは資金を入金して待つだけで済みます。ロボアドバイザーは実際の投資プロセスを処理し、AI データ分析と自動化を使用して取引を完了し、市場の変化に対応します。現在、消費者は多くのロボアドバイザーから選べるため、ほぼ誰でも簡単に投資を始めることができます。
人工知能データの長所と短所
人工知能データと人間のデータの主な違いは、人工知能データには感情的な要素が欠けていることです。場合によっては、これが不利になる可能性があります (特に短期取引の場合)。たとえば、現在の政治問題や PR 問題 (およびその結果) は人間によって感情分析できます。この感情的な洞察により、一般の認識を予測に組み込み、前向きな調整を行うことができます。 AI データは完全に統計に基づいており、感情は考慮されていないため、ロボアドバイザーは反応することしかできず、株主の感情的な反応に基づいて前向きな選択をすることはできません。
一方、AI データに完全に依存するシステムでは、感情的な意思決定は行われません。景気低迷が長引くと、人間は投資を再考し始めるかもしれないが、AIは意思決定のために過去のデータのみを考慮するようになるだろう。すべての決定は過去の包括的な分析のみに基づいており、人間のアナリストが行う決定よりも包括的です。
消費者のアクセシビリティの向上
AI データを投資に組み込むことのもう 1 つの利点は、顧客のアクセシビリティの向上です。早期に投資すると複利を活用できますが、人間のコンサルタントが請求する金利と手数料のせいで、コンサルタントを雇うことが現実的ではない可能性があります。ロボアドバイザーはポートフォリオ管理サービスを数分の一のコストで提供できるため、潜在的な若い投資家にとってより手頃な価格になります。ロボアドバイザーの平均収益率 (通常 11.7% ~ 13.4%) は他の投資オプションほど印象的ではありませんが、限られた収入でポートフォリオの構築を始める最も簡単な方法の 1 つとなります。
未来の AI データ
このテクノロジーはまだ比較的新しいかもしれませんが、最新の人工知能が将来的にさらに普及し続けると予想される理由があります。人間のアナリストに完全に取って代わることはできないかもしれませんが、将来的に市場で役割を果たすことは間違いありません。個人の財務管理から市場追跡まで幅広い用途があり、テクノロジーの進歩とともにその選択肢はさらに増えると予想されます。
以上がAI データ、伝統的な取引、現代の投資の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フロントエンド開発の世界では、VSCode はその強力な機能と豊富なプラグイン エコシステムにより、数多くの開発者に選ばれるツールとなっています。近年、人工知能技術の急速な発展に伴い、VSCode 上の AI コード アシスタントが登場し、開発者のコーディング効率が大幅に向上しました。 VSCode 上の AI コード アシスタントは雨後のキノコのように出現し、開発者のコーディング効率を大幅に向上させました。人工知能テクノロジーを使用してコードをインテリジェントに分析し、正確なコード補完、自動エラー修正、文法チェックなどの機能を提供することで、コーディング プロセス中の開発者のエラーや退屈な手作業を大幅に削減します。今日は、プログラミングの旅に役立つ 12 個の VSCode フロントエンド開発 AI コード アシスタントをお勧めします。
