モジュラーMoEは視覚的なマルチタスク学習の基本モデルとなる
マルチタスク学習 (MTL) には、異なるタスク間の勾配が矛盾する可能性があるため、多くの課題があります。タスク間の相関関係を利用するために、著者らは、複数の専門家で構成されるモジュール型モデルである Mod-Squad モデルを導入します。このモデルは、タスクと専門家のマッチングを柔軟に最適化し、タスクに対して一部の専門家を選択できます。このモデルでは、各エキスパートがタスクの一部のみに対応し、各タスクがエキスパートの一部のみに対応するため、タスク間のポジティブなつながりを最大限に活用できます。 Mod-Squad は、Mixture of Experts (MoE) レイヤーを Vision Transformer モデルに統合し、エキスパートとタスク間の疎だが強力な依存関係を促進する新しい損失関数を導入します。さらに、各タスクについて、モデルはエキスパート ネットワークのごく一部のみを保持し、元の大規模モデルと同じパフォーマンスを達成できます。このモデルは、13 のビジョン タスクの Taskonomy ビッグ データ セットと PASCALContext データ セットで最高の結果を達成しました。
文書アドレス: https://arxiv.org/abs/2212.08066
プロジェクト アドレス: https://vis-www.cs.umass.edu/mod-squad/
#Github アドレス: https: / /github.com/UMass-Foundation-Model/Mod-Squad
マルチタスク学習 (MTL) の目的は、タスク間の関係をモデル化することです。複数のタスクに対応する統合モデルを構築します。図 1 に示すように、Mod-Squad の主な目的は、エキスパートをすべてのタスクではなく一部のタスクによってのみ更新できるようにすることであり、エキスパートの一部だけが各タスクによって更新されるようにすることです。これにより、タスク間の干渉を回避しながら、モデルの能力を最大限に活用することができます。
図 1. Mod-Squad: 専門家とタスクがお互いを選択します。 MoE ViT: すべてのスペシャリストがすべてのタスクで使用されます。
以下はこの記事の簡単な紹介です。モデル構造
図 2. Mod-Squad: 専門家グループ (専門家の混合) の挿入Vision Transformer へ。
図 2 に示すように、Mod-Squad の構造は、Vision Transformer (ViT) に Mixture-of-expert (MoE) を導入することです。 MoE は、複数の専門家がハイブリッド モデルを形成する機械学習モデルです。各エキスパートは独立したモデルであり、各モデルは異なる入力に対して異なる形で寄与します。最後に、すべての専門家の貢献が重み付けされて結合され、最終的な出力が得られます。このアプローチの利点は、入力画像の内容に基づいて最適なエキスパートを動的に選択し、計算量を制御できることです。前の MoE モデルが収束した後、さまざまな状況に応じてさまざまなエキスパートを使用できますが、特定のタスクでは、モデルはすべてのエキスパートを使用する傾向に収束します。 Mod-Squad を使用すると、モデルは画像に対してさまざまなエキスパートを使用でき、収束後、モデルはタスクに一部のエキスパートのみが使用される状態に到達できます。次に、これをどのように実現するかを紹介します。
エキスパートとタスク間の相互情報を最大化する
この論文では、エキスパート E とタスク T の間の割り当てを最適化するための、タスクとエキスパートの同時確率モデルを提案します。この確率モデルは、エキスパートとタスク間の相互情報を計算するために使用され、MoE の重みネットワークを最適化するための追加の損失関数として機能します。相互情報量の式は次のとおりです. E と T の確率は MoE の重みネットワークから求めることができます. 詳細については論文を参照してください.
図 3. さまざまな専門家を使用したタスクの頻度プロットの比較。横軸はさまざまな専門家を表し、縦軸はさまざまなタスクを表し、濃い色は使用頻度が高いことを表します。 Mod-Squad の周波数プロットはまばらで鮮明です。 このタスクとエキスパートの間の疎で非常に強い依存関係の利点は次のとおりです: 1. 同様のタスクでは、同じエキスパート; #2. エキスパートは、積極的に関連するタスクのグループによって使用される傾向があります; #3. モデルの能力 #4. 小規模な単一タスク モデルを抽出できます。特定のタスクの大規模なマルチタスク モデルから、より大きなモデルと同じパフォーマンスを持ちます。この機能を使用すると、非常にマルチタスク モデルから小規模なシングルタスク モデルを抽出できます。 次の図に示すように、モデルはタスク間でエキスパートを共有する頻度に基づいて、タスク間の類似性を計算することもできます。 3D に偏ったタスクは同じ専門家を使用する傾向があるため、より類似していることがわかります。
実験部分 大規模なデータセット Taskonomy でも大幅な改善が見られ、Mod-Squad が平均して高いことがわかります。純粋な MTL よりも 2.8 ポイント高く、枝刈り後も同じパフォーマンスを維持します。 PASCAL-Context の他の手法と比較すると、Mod-Squad は他の MoE 手法より平均で 2 ポイント近く高いです。
#具体的な詳細については、原文を参照してください。
以上がモジュラーMoEは視覚的なマルチタスク学習の基本モデルとなるの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。
