人工知能の公平性技術は命を救う上で大きな意味を持つ
バージニア工科大学のコンピューターサイエンス教授であるダフネ・ヤオ氏は、医療アプリケーションにおける機械学習モデルの予測精度を向上させたいと考えています。不正確な予測は生命を脅かす結果をもたらす可能性があります。これらの予測誤差は、緊急治療室の訪問中に患者が癌で死亡するか生存する可能性の誤算につながる可能性があります。
#彼女の発見は、最近、医療コミュニケーション誌に掲載されました。このジャーナルは、臨床、トランスレーショナル、医療のすべてをカバーする質の高い研究、レビュー、論文の出版に特化したジャーナルです。公衆衛生の研究分野。
多くの臨床データセットは大多数の母集団サンプルによって占められているため、バランスが取れていないとヤオ氏は述べています。典型的な画一的な機械学習モデルのパラダイムでは、人種や年齢の違いが存在する可能性がありますが、無視される可能性があります。
Yao 氏とその研究チームは、米国医学アカデミーの会員であり、米国デル医学部の精神医学および行動科学の准教授である Charles B. Nemeroff 氏と共同研究しました。テキサス大学オースティン学部の教授は、トレーニング データのバイアスが、特に若い患者や有色人種の患者など過小評価されている患者の予測結果にどのような影響を与えるかを研究しています。
「高度な機械学習の世界的リーダーであるヤオ氏と仕事ができることに非常に興奮しています。」とネメロフ氏は述べています。学習における新たな進歩は、臨床研究者が頻繁に遭遇する非常に重要な問題、つまり臨床試験に通常参加する比較的少数の少数派の問題に適用できる可能性があります。”
この結果医学的結論は主に多数派グループ(ヨーロッパ系白人患者)に対して導かれており、少数民族グループには当てはまらない可能性があります。
ネメロフ氏は、「この新しい報告書は、少数派グループの予測の精度を向上させる方法を提供します。」「明らかに、これらの発見は少数派の扱いの改善に重要な意味を持っています」臨床ケアは非常に重要です。"
Yao のバージニア工科大学チームは、コンピュータ サイエンス学科の博士課程学生 Sharmin Afrose と Wenjia Song、および工学部の Chang Lu で構成されています。化学工学部、フレッド・W・ブル教授が構成。研究を実施するために、彼らは、特定の民族または年齢グループ向けにカスタマイズされたモデルをトレーニングする新しい二重優先 (DP) バイアス補正方法を使用して、2 つのデータセットに対して 4 つの異なる予後タスクに関する実験を実施しました。
「私たちの研究は、予測エラーを修正できる新しい AI 公平性手法を実証しています」と、博士課程 4 年生の Song 氏は述べました。同氏は、研究分野にデジタル ヘルスとサイバーセキュリティの機械学習が含まれています。 「当社の DP 手法は、少数派クラスのパフォーマンスを最大 38% 向上させ、異なる人口統計グループ間の予測の差異を大幅に削減し、他のサンプリング手法よりも 88% 優れています。」
The #Surveillance, Epidemiology,ソング氏は乳がんと肺がんの生存率に関するタスクに End Outcomes データセットを使用し、博士課程 5 年生のアフロス氏はボストンのベス イスラエル ディーコネス メディカル センターのデータセットを院内死亡率予測と失効補償予測タスクに使用しました。「偏見を軽減するソリューションを見つけられたことに興奮しています」と、ヘルスケアおよびソフトウェア セキュリティにおける機械学習を研究の焦点としているアフローズ氏は述べています。 「当社の DP バイアス補正技術は、少数派グループの生命を脅かす可能性のある予測エラーを削減します。」
これらの発見は公開され、一般にアクセスできるため、チームは他の研究者との協力に熱心に取り組んでいます。これらの方法を独自の臨床データ分析に使用します。
#Song 氏は次のように述べています。「私たちの手法は、さまざまな機械学習モデルに簡単に導入でき、表現バイアスのあるあらゆる予測タスクのパフォーマンスの向上に役立ちます。」
以上が人工知能の公平性技術は命を救う上で大きな意味を持つの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G
