では、プログラミング能力はなくなるのでしょうか?
著者 | Anirudh VK
翻訳者 | Xu Jiecheng
自動コーディング プラットフォームは現在、プログラマー向けの新興テクノロジーの最前線にあり、開発者がコード スニペットを作成するための新しい人工知能を提供しています。代替ドライブ。特に Microsoft の GitHub Copilot プラットフォームによって推進されたこの進歩は、現在、世界中の開発者の作業モデルをゆっくりと変えています。
ノーコード プラットフォームやローコード プラットフォームなど、近年の多くのコーディング代替手段は、技術者以外のユーザーにとって理想的です。このようなツールは技術界の一部の「筋金入りのプログラマー」から軽蔑と怒りを引き起こしますが、開発者が実際に入力する必要があるコードの量が大幅に削減されるため、最も経験豊富なコーディングのベテランでも自動コーディング アルゴリズムの恩恵を受けることができることは認めざるを得ません。
Tesla と OpenAI の元人工知能担当ディレクターである Andrej Karpathy 氏は、自動コーディング ツールに対する感情をツイートで表明しました:
「Copilot のおかげで、コーディングが大幅にスピードアップしました。Copilot を試してみると、 「ハンド コーディング」に戻ることを想像するのは難しいです。私はまだ使い方を学んでいますが、すでにコードの約 80% を書くのに役立ち、約 80% の精度を維持しています。Copilot を使用するときはそう言えます。
Andrej Karpathy 氏の発言は、ほとんどの開発者にも認識されています。自動コーディング プラットフォームを使用すると、開発者はコーディング時間を大幅に節約できるため、開発者はより多くのエネルギーを処理に費やすことができます。アプリケーションの他の問題に加えて、自動コーディング プラットフォームも短期間に驚くべき速度で世界中で急速に採用されています。 GitHub Copilot を例に挙げると、CitHub Copilot は発売から 1 か月以内に 400,000 を超える有料サブスクリプション (月額 10 ドル、年間 100 ドル) を獲得しました。しかし、これらの絶え間なく改良されているツールがより多くのコーディング タスクを引き受け始めると、新たな疑問が生じます。自動コーディング ツールに依存するため、開発者は徐々にコーディング スキルを失ってしまうのでしょうか?
1. コーディング能力の低下
正直に言うと、自動コーディング ツールを使用したことのある人なら誰でも、自動で作成されるコードが完璧ではないことを知っています。提案されたコード スニペットの構文には何も問題がないかもしれませんが、多くの場合、そのようなツールは非効率的な方法で記述されており、依存関係の問題が発生する可能性があります。 YCombinator ニュース フォーラムのユーザーである Aryamaan は、Replit が提供する自動コーディング プラットフォーム「Ghostwriter」の使用について、次のようなコメントを寄せています。しかし、場合によっては、標準のオートコンプリートよりも愚かで、定義された変数を認識せず、書きかけの変数を完成させるためにそれらを使用しません。」
自動化については多くの懸念がありますが、コーディングツール 不満は依然として残る。しかし、別の観点から見ると、ほぼすべての自動コーディング ツールは人工知能アルゴリズムに基づいており、これはテクノロジーの進化とデータ量の増加に伴い、その使いやすさと信頼性が今後も向上することを意味します。新世代の開発者にとって、自動コーディング ツールは不可欠なものになるでしょう。現在学習段階にある開発者志望者は、数年後にはこの分野に参入することになるでしょう。その間に、自動化されたコーディング ツールが徐々に平均的な人間の開発者に追いつくことになるでしょう。これは、次世代の開発者が徐々にコーディングをしなくなる可能性にもつながり、その後の世代のコーディング能力がある程度失われる可能性さえあります。
今日の開発者は、使用する言語を深く理解し、実際に問題の解決策を記述する方法についての知識を必要としています。ただし、将来のプログラマーは、この知識を迅速なエンジニアリングと組み合わせてコード スニペットを生成できるため、言語がどのように機能するかを知るだけで済みます。プロンプト エンジニアリングは、NLP テクニックを使用して LLM に適切な質問をし、それによってアルゴリズムが最適に応答するように促すプロセスです。
さまざまな分野に変革をもたらしている他の人工知能アプリケーションと同様、人々が現在直面している問題は、プログラミング言語の見方について合意に達する必要があることです。次世代の開発者は、ラピッド エンジニアリングを通じて自動コーディング ツールを最大限に活用する方法を学ぶか、プログラミング言語を学習するための現在の裏返しのアプローチに固執するかのどちらかを選択することになるでしょう。今後数年以内に。
2. 自動コーディング ツールの将来
自動コーディング ツールの採用率は近年増加し続けており、これらの製品を開発している企業は新機能や新機能を追加するために革新を続けています。ユーザーエクスペリエンスを最適化します。 Github Copilot はユーザー コードを収集し、それをアルゴリズムのトレーニングに使用していると批判されていますが、実際のところ、Github Copilot のアルゴリズムはデータベースにコードが追加されるたびに進化し続けています。
もちろん、現在、データの使用に対してより責任あるアプローチをとっている企業も数多くあります。 Tabnine を例に挙げると、アルゴリズムのトレーニングには公開データのみが使用されます。 Tabnine のモデルは、ユーザーのコーディング スタイルから学習することもできます。ユーザーのコンピューター上でアルゴリズムをローカルに実行することで、モデルはプログラマーのスタイルを学習し、ユーザーのニーズにより適したスニペットの提案を提供できます。これにより、すべてのデータが集中リポジトリに送り返されることも防止され、追加の価値を提供しながらプライバシーを保護します。
複数のプログラミング言語で提案を提供できる 1 つの大きなモデル (Codex など) を作成する現在のアプローチとは対照的に、将来の自動コーディング プラットフォームでは複数のモデルを使用し、それらを最適な言語にプラグインする可能性があります。 Tabnine は、さまざまなプログラミング言語でさまざまなオープンソース モデルを使用して成功を収めてきました。 Tabnine のエコシステムおよびビジネス開発担当バイスプレジデントである Brandon Jung 氏は、最近の公開インタビューで次のように述べています。「私たちは他所から最高のモデルを採用しています。それらはオープンソースであり、素晴らしいものです。私たちは非常に大規模なモデルを採用していますが、これは非常に高価です」 「トレーニングに使用しており、私たちは各言語に最適なものに基づいたコードを専門としています。これらのモデルの一部は、他のモデルよりも特定の言語に適していることがわかりました。」
これを採用するこのアプローチは、単に次のことを行うだけではありません。自動コーディング プラットフォームをより正確にするだけでなく、企業が個人コード リポジトリ上でプラットフォームを実行し、微調整することもより実現可能になります。現在、多くのデータが GitHub、AWS、GCP などのサービス プロバイダーから分離されていますが、これらのプラットフォームから離れることで、一般の開発者にとって自動コーディング ツールがより利用しやすくなる可能性があります。これにより、より多くの人がオートエンコーダをツールとしてより効果的に利用するようになり、ツールの予測の精度が向上します。
GitHub Copilot と Tabnine を例に挙げると、自動コーディング ツールは将来の開発者のための新しい作業環境を構築しており、それがプログラマーにもたらすメリットは否定できません。より高度な AI ツールは、開発者がコードを書く効率を大幅に向上させるだけでなく、過労になりがちなプログラマーのストレスを軽減することもできます。この点で、現段階の企業は、この傾向と、開発者が自動コーディング ツールを使用することで得られる有効性を認識し、必要な未来志向の開発ツールを提供することを検討する必要があります。
元のリンク: https://analyticsindiamag.com/have-developers-forgotten-how-to-code/
以上がでは、プログラミング能力はなくなるのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス

どんな時でも集中力は美徳です。著者 | 編集者 Tang Yitao | 人工知能の復活により、ハードウェア革新の新たな波が起きています。最も人気のある AIPin は前例のない否定的なレビューに遭遇しました。マーケス・ブラウンリー氏(MKBHD)はこれを、これまでレビューした中で最悪の製品だと評したが、ザ・ヴァージの編集者デイビッド・ピアース氏は、誰にもこのデバイスの購入を勧めないと述べた。競合製品である RabbitR1 はそれほど優れていません。この AI デバイスに関する最大の疑問は、これが明らかに単なるアプリであるのに、Rabbit は 200 ドルのハードウェアを構築したということです。多くの人がAIハードウェアのイノベーションをスマートフォン時代を打破するチャンスと捉え、スマートフォン時代に全力を注ぐ。

Python は、学習の容易さと強力な機能により、初心者にとって理想的なプログラミング入門言語です。その基本は次のとおりです。 変数: データ (数値、文字列、リストなど) を保存するために使用されます。データ型: 変数内のデータの型 (整数、浮動小数点など) を定義します。演算子: 数学的な演算と比較に使用されます。制御フロー: コード実行のフロー (条件文、ループ) を制御します。

Python は、問題解決の初心者に力を与えます。ユーザーフレンドリーな構文、広範なライブラリ、変数、条件文、ループによる効率的なコード開発などの機能を備えています。データの管理からプログラム フローの制御、反復的なタスクの実行まで、Python が提供します
