目次
1. データおよび特徴エンジニアリング パイプライン
2. 特徴ストレージ
3. 機械学習モデルのトレーニングと再トレーニング パイプライン
4. トレーニングとモデルのメタストレージ
5. 機械学習モデルのサービス パイプライン
6. 本番環境での ML モデルの監視
7. 機械学習パイプライン
8. ワークフロー オーケストレーション
9. 継続的インテグレーション/継続的トレーニング/継続的デリバリー (CI/CT/CD)
10. データとモデルのエンドツーエンドの品質管理
ホームページ テクノロジー周辺機器 AI 機械学習システムアーキテクチャの 10 の要素

機械学習システムアーキテクチャの 10 の要素

Apr 13, 2023 pm 11:37 PM
システム 機械学習 建築

今は AI エンパワーメントの時代であり、機械学習は AI を実現するための重要な技術手段です。では、普遍的な機械学習システム アーキテクチャは存在するのでしょうか?

ベテラン プログラマの認識範囲内では、特にシステム アーキテクチャに関しては何でもありません。ただし、ほとんどの機械学習駆動システムまたはユースケースに適用できる場合、スケーラブルで信頼性の高い機械学習システム アーキテクチャを構築することは可能です。 機械学習のライフサイクルの観点から見ると、このいわゆるユニバーサル アーキテクチャは、機械学習モデルの開発から、トレーニング システムやサービス システムの運用環境への展開まで、主要な機械学習段階をカバーします。 このような機械学習システム アーキテクチャを 10 要素の次元から記述してみることができます。

機械学習システムアーキテクチャの 10 の要素

1. データおよび特徴エンジニアリング パイプライン

一定時間内に高品質のデータを提供し、スケーラブルかつ柔軟な方法で有用なデータを生成する機械学習機能。一般に、データ パイプラインは特徴エンジニアリング パイプラインから分離できます。データ パイプラインは、抽出、変換、読み込み (ETL) パイプラインを指します。このパイプラインでは、データ エンジニアがオブジェクト ストレージ上に構築されたデータ レイクなどのストレージ場所にデータを転送する責任を負い、機能エンジニアリング パイプラインは生データをデータに変換することに重点を置いています。機械学習アルゴリズムがより高速かつ正確に学習する機械学習機能に役立ちます。

特徴量エンジニアリングは通常 2 つの段階に分かれています。第 1 段階では、通常、特徴量エンジニアリング ロジックは、最適な特徴セットを見つけるために、開発段階でさまざまな実験を通じてデータ サイエンティストによって作成されます。一方、データ エンジニアまたは機械学習エンジニアは、モデル トレーニング用の特徴量エンジニアリング パイプラインの作成を担当します。環境内の本番サービスは高品質の特徴データを提供します。

2. 特徴ストレージ

機械学習特徴データを保存し、バージョン管理を実行し、検出、共有、再利用に使用され、モデルのトレーニングとサービスに一貫したデータと機械学習機能を提供します。機械学習システムの信頼性を向上させます。

機械学習の特徴データに対して、特徴ストレージは特徴エンジニアリング パイプラインによって作成された永続ストレージ ソリューションです。特徴ストレージはモデルのトレーニングと提供をサポートします。したがって、これはエンドツーエンドの機械学習システム アーキテクチャの非常に重要な部分であり、重要なコンポーネントです。

3. 機械学習モデルのトレーニングと再トレーニング パイプライン

機械学習トレーニング用のさまざまなパラメーターとハイパーパラメーターを実行し、シンプルで構成可能な方法で実験を実施し、これらのトレーニングを記録しますさまざまなパラメーターとモデルのパフォーマンス指標走る。最もパフォーマンスの高いモデルを自動的に評価、検証、選択し、機械学習モデル ライブラリに記録します。

4. トレーニングとモデルのメタストレージ

パラメーター、インジケーター、コード、構成結果、トレーニング済みモデルを含む機械学習操作を保存および記録し、モデルのライフサイクル管理、モデルの注釈、モデルを提供します。発見とモデルの再利用、その他の機能。

エンジニアリング、モデル トレーニング、モデル サービスを特徴とする完全な機械学習システムの場合、データから大量のメタデータを生成できます。これらすべてのメタデータは、システムがどのように動作するかを理解するのに非常に役立ち、データ -> 機能 -> モデル -> サーバーの追跡可能性を提供し、モデルが動作しなくなったときにデバッグに役立つ情報を提供します。

5. 機械学習モデルのサービス パイプライン

フルサービスとレイテンシーの両方を考慮して、実稼働環境で機械学習モデルを使用するための適切なインフラストラクチャを提供します。

一般的に、サービス モードにはバッチ サービス、ストリーミング サービス、オンライン サービスの 3 つがあります。サービスの種類ごとに、まったく異なるインフラストラクチャが必要になります。さらに、インフラストラクチャは耐障害性があり、特にビジネス クリティカルな機械学習システムの場合、リクエストやスループットの変動に応じて自動的にスケールする必要があります。

6. 本番環境での ML モデルの監視

本番環境では、データ収集、モニタリング、分析、可視化、およびデータとモデルのドリフトや異常が発見された場合の通知機能を提供し、必要な情報を提供します。システムのデバッグを支援します。

7. 機械学習パイプライン

特定の機械学習ワークフローと比較して、機械学習パイプラインは、データ サイエンティストが高品質のコードを維持し、生産時間を短縮しながら、より迅速に開発および反復できるようにする再利用可能なフレームワークを提供します。一部の機械学習パイプライン フレームワークは、オーケストレーション機能とアーキテクチャ抽象化機能も提供します。

8. ワークフロー オーケストレーション

ワークフロー オーケストレーションは、エンドツーエンドの機械学習システムを統合し、これらすべての主要コンポーネントの依存関係を調整および管理するための重要なコンポーネントです。ワークフロー オーケストレーション ツールは、ログ、キャッシュ、デバッグ、再試行などの機能も提供します。

9. 継続的インテグレーション/継続的トレーニング/継続的デリバリー (CI/CT/CD)

継続的テストと継続的インテグレーションは、新しいデータを使用して新しいモデルを継続的にトレーニングし、必要に応じてモデルのパフォーマンスをアップグレードすることを指します。継続的に実稼働環境にサービスを提供し、安全かつ俊敏かつ自動化された方法でモデルをデプロイします。

10. データとモデルのエンドツーエンドの品質管理

エンドツーエンドの機械学習ワークフローの各段階で、信頼性の高いデータ品質チェック、モデル品質チェック、データとコンセプトのドリフトが行われます。機械学習システム自体が信頼できるものであることを保証するために、検出機能を組み込む必要があります。これらの品質管理チェックには、記述統計、全体的なデータ形状、欠損データ、重複データ、ほぼ一定の特徴、統計検定、距離メトリック、モデル予測品質などが含まれます。

上記は機械学習システムのアーキテクチャの10要素と言えます。私たちの実践では、全体的なワークフローはほぼ同じままであるはずですが、その一部の要素は微調整およびカスタマイズする必要がある場合があります。

機械学習のシステム アーキテクチャを調整するにはどうすればよいですか?

製品設計の開始時にアーキテクチャ要素を合理化するにはどうすればよいですか?

機械学習システムを導入する際に、元のシステム アーキテクチャの継続性を維持するにはどうすればよいですか?

以上が機械学習システムアーキテクチャの 10 の要素の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ファーウェイのQiankun ADS3.0インテリジェント運転システムは8月に発売され、初めてXiangjie S9に搭載される ファーウェイのQiankun ADS3.0インテリジェント運転システムは8月に発売され、初めてXiangjie S9に搭載される Jul 30, 2024 pm 02:17 PM

7月29日、AITO Wenjieの40万台目の新車のロールオフ式典に、ファーウェイの常務取締役、ターミナルBG会長、スマートカーソリューションBU会長のYu Chengdong氏が出席し、スピーチを行い、Wenjieシリーズモデルの発売を発表した。 8月にHuawei Qiankun ADS 3.0バージョンが発売され、8月から9月にかけて順次アップグレードが行われる予定です。 8月6日に発売されるXiangjie S9には、ファーウェイのADS3.0インテリジェント運転システムが初搭載される。 LiDARの支援により、Huawei Qiankun ADS3.0バージョンはインテリジェント運転機能を大幅に向上させ、エンドツーエンドの統合機能を備え、GOD(一般障害物識別)/PDP(予測)の新しいエンドツーエンドアーキテクチャを採用します。意思決定と制御)、駐車スペースから駐車スペースまでのスマート運転のNCA機能の提供、CAS3.0のアップグレード

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

常に新しい! Huawei Mate60シリーズがHarmonyOS 4.2にアップグレード:AIクラウドの強化、Xiaoyi方言はとても使いやすい 常に新しい! Huawei Mate60シリーズがHarmonyOS 4.2にアップグレード:AIクラウドの強化、Xiaoyi方言はとても使いやすい Jun 02, 2024 pm 02:58 PM

4月11日、ファーウェイはHarmonyOS 4.2 100台のアップグレード計画を初めて正式に発表し、今回は携帯電話、タブレット、時計、ヘッドフォン、スマートスクリーンなどのデバイスを含む180台以上のデバイスがアップグレードに参加する予定だ。先月、HarmonyOS4.2 100台アップグレード計画の着実な進捗に伴い、Huawei Pocket2、Huawei MateX5シリーズ、nova12シリーズ、Huawei Puraシリーズなどの多くの人気モデルもアップグレードと適応を開始しました。 HarmonyOS によってもたらされる共通の、そして多くの場合新しい体験を楽しむことができる Huawei モデルのユーザーが増えることになります。ユーザーのフィードバックから判断すると、HarmonyOS4.2にアップグレードした後、Huawei Mate60シリーズモデルのエクスペリエンスがあらゆる面で向上しました。特にファーウェイM

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles