目次
データ拡張は、既存のデータを取得して新しい合成データを生成できる手法です。
オートエンコーダーは、低次元のデータ表現を学習するために使用される深層学習モデルです。
ホームページ テクノロジー周辺機器 AI 小規模なデータセットを使用して深層学習モデルを改善するにはどうすればよいですか?

小規模なデータセットを使用して深層学習モデルを改善するにはどうすればよいですか?

Apr 13, 2023 pm 11:58 PM
機械学習 データ ディープラーニング

翻訳者 | Bugatti

レビュアー | Sun Shujuan

ご存知のとおり、深層学習モデルには大量のデータが必要です。深層学習モデルに供給するデータが増えるほど、パフォーマンスが向上します。残念ながら、実際のほとんどの状況では、これは不可能です。十分なデータがないか、データの収集にコストがかかりすぎる可能性があります。

小規模なデータセットを使用して深層学習モデルを改善するにはどうすればよいですか?

#この記事では、より多くのデータを使用せずにディープ ラーニング モデルを改善する 4 つの方法について説明します。

ディープ ラーニングにはなぜこれほど多くのデータが必要なのでしょうか?

深層学習モデルは、複雑な関係を理解する方法を学習できるため、魅力的です。深層学習モデルには複数の層が含まれています。各層は、複雑さが増すデータ表現を理解することを学習します。最初の層は、エッジなどの単純なパターンの検出を学習する可能性があります。 2 番目の層は、これらのエッジのパターン (形状など) を認識することを学習する可能性があります。 3 番目の層は、これらの形状で構成されるオブジェクトの認識を学習する可能性があります。

各層は一連のニューロンで構成され、これらのニューロンは前の層の各ニューロンに接続されます。これらすべてのレイヤーとニューロンは、最適化するパラメーターが多数あることを意味します。つまり、ディープ ラーニング モデルには強力な機能があるということです。しかし、欠点は、過剰適合する傾向があることを意味します。オーバーフィッティングとは、モデルがトレーニング データ内で捕捉する干渉信号が多すぎるため、新しいデータに適用できないことを意味します。

十分なデータがあれば、深層学習モデルは非常に複雑な関係を検出する方法を学習できます。ただし、十分なデータがない場合、深層学習モデルはこれらの複雑な関係を理解できません。深層学習モデルが学習できるように、十分なデータが必要です。

しかし、これ以上のデータを収集する可能性が低い場合は、これを克服するためのいくつかの手法があります。

1.転移学習は、小規模なデータセットを使用した深層学習モデルのトレーニングに役立ちます。

転移学習は、1 つの問題に関してトレーニングされたモデルを取得し、それを関連するさまざまな問題を解決するための開始点として使用できる機械学習手法です。

たとえば、犬の画像の巨大なデータセットでトレーニングされたモデルを取得し、それを犬の品種を識別するモデルをトレーニングするための開始点として使用できます。

最初のモデルで学習した機能を再利用して、時間とリソースを節約できることを願っています。 2 つのアプリケーションがどのように異なるかについての経験則はありません。ただし、元のデータセットと新しいデータセットが大きく異なる場合でも、転移学習は使用できます。

たとえば、猫の画像でトレーニングされたモデルを取得し、それをラクダの種類を認識するモデルをトレーニングするための開始点として使用できます。最初のモデルの 4 本の足の機能を解明できれば、ラクダの識別に役立つかもしれません。

転移学習についてさらに詳しく知りたい場合は、

「自然言語処理のための転移学習」 を参照してください。 Python プログラマーの場合は、「Python による実践的な転移学習」 も役立つかもしれません。 2. データ拡張を試してみる

データ拡張は、既存のデータを取得して新しい合成データを生成できる手法です。

たとえば、犬の画像のデータセットがある場合、データ拡張を使用して新しい犬の写真を生成できます。これを行うには、画像をランダムにトリミングしたり、水平方向に反転したり、ノイズを追加したり、その他のいくつかのテクニックを使用します。

データ セットが小さい場合、データ拡張は大きなメリットをもたらします。新しいデータを生成することで、データセットのサイズを人為的に拡大し、ディープ ラーニング モデルにより多くのデータを処理できるようにすることができます。

ディープ ラーニングに関するこれらの

配布資料

は、データ拡張についてより深く理解するのに役立ちます。 3. オートエンコーダーの使用

オートエンコーダーは、低次元のデータ表現を学習するために使用される深層学習モデルです。

オートエンコーダーは、データを低次元空間に圧縮する方法を学習できるため、データ セットが小さい場合に役立ちます。

オートエンコーダーにはさまざまな種類があります。変分オートエンコーダ (VAE) は、一般的なタイプのオートエンコーダです。 VAE は生成モデルであり、新しいデータを生成できることを意味します。 VAE を使用してトレーニング データに似た新しいデータ ポイントを生成できるため、これは非常に役立ちます。これは、実際にさらに多くのデータを収集せずにデータセットのサイズを増やす優れた方法です。

元のタイトル:

小規模なデータセットで深層学習モデルを改善する方法

以上が小規模なデータセットを使用して深層学習モデルを改善するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 May 07, 2024 pm 05:00 PM

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

AI スタートアップ企業は一斉に OpenAI に転職し、イリヤが去った後にセキュリティ チームが再編成されました。 AI スタートアップ企業は一斉に OpenAI に転職し、イリヤが去った後にセキュリティ チームが再編成されました。 Jun 08, 2024 pm 01:00 PM

先週、社内の辞任と社外からの批判が相次ぐ中、OpenAIは内外のトラブルに見舞われた。 - 未亡人姉妹への侵害が世界中で白熱した議論を巻き起こした - 「覇権条項」に署名した従業員が次々と暴露 - ネットユーザーがウルトラマンの「」をリストアップ噂の払拭: Vox が入手した漏洩情報と文書によると、アルトマンを含む OpenAI の上級幹部はこれらの株式回収条項をよく認識しており、承認しました。さらに、OpenAI には、AI セキュリティという深刻かつ緊急の課題が直面しています。最近、最も著名な従業員2名を含むセキュリティ関連従業員5名が退職し、「Super Alignment」チームが解散したことで、OpenAIのセキュリティ問題が再び注目を集めている。フォーチュン誌は OpenA を報じた。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

See all articles