ディープラーニングと人間の脳
ディープラーニングは、大量のデータを取り込み、そこから学習しようとすることで人間の脳をシミュレートする機械学習のサブセットです。 IBMの用語の定義では、ディープラーニングによりシステムは「データを集約し、信じられないほどの精度で予測を行う」ことが可能になりますが、ディープラーニングは信じられないほど素晴らしいものですが、情報を処理して学習する人間の脳の能力を活用することはできないとIBMは鋭く指摘しています。 。
ディープ ラーニングと DNN (ディープ ニューラル ネットワーク) は、天気予報、顔認識、チャットボットなどの複雑な現実世界の問題を解決したり、他の種類の複雑なデータ分析を実行したりするために使用されます。アライド・マーケット・リサーチは、世界のディープラーニング市場は2030年までに2020年の68億5,000万米ドルから1,800億米ドル近くに増加すると予想している。 Allied Market Research による別の調査では、人工知能分野の成長と、データと高度な分析ツールに対する需要の高まりにより、世界のニューラル ネットワーク市場が 2030 年までに 1,530 億ドル近くに達すると予想されていることが明らかになりました。
ディープラーニングをより深く理解することは、完全自動運転車や次世代仮想アシスタントなど、人工知能や機械学習由来のテクノロジーの将来の応用に役立ちます。将来的には、ディープラーニングは教師なし学習に進化し、人間の脳がどのように機能するかについてさらに多くの洞察を提供する可能性があります。この 2 番目の追求により、グラスゴー大学の研究者らは、DNN が人間の脳とどの程度似ているかを研究するようになりました。グラスゴー大学によると、DNN テクノロジーに対する現在の理解は比較的限られており、ディープ ニューラル ネットワークがどのように情報を処理するかを完全に理解している人は誰もいません。
科学界の理解をさらに深めるため、最近出版された「脳とその DNN モデルのアルゴリズム的等価性」の中で、研究者たちは、人工知能モデルが情報を処理する方法を理解する方法を提案し、テストしました。人間の脳。目標は、DNN モデルが人間の脳のようなものを認識するために同様の計算ステップを使用しているかどうかを判断することです。この研究では、人工知能モデルと人間の脳の類似点と相違点を特定し、人間の脳にできるだけ近い情報を処理する人工知能テクノロジーの作成に向けた一歩を踏み出しました。
グラスゴー大学の研究技術責任者であるフィリップ・シンス氏は、「人間の脳とそのDNNモデルが同じように物事を認識しているかどうかをより深く理解することで、DNNを使用したより正確な検出が可能になるでしょう。 -世界のアプリケーション人間の脳の認識メカニズムをより深く理解できれば、この知識を DNN に移すことができ、顔認識などのアプリケーションでの DNN の使用方法の改善に役立ちます。
#目標が可能な限り人間に近い意思決定プロセスを作成することである場合、テクノロジーは少なくとも人間と同じように情報を処理し、意思決定を行うことができなければなりません。理想的には人間よりも優れています。 。公開された記事の最後で、著者は研究に基づいた一連の未解決の疑問を列挙しています。「DNN は人間の意思決定行動の多様性をどのように予測するのでしょうか?」これも研究する価値のある問題です。誰もが直面するわけではないからです。すべての入力が同じ決定を下すことになりますが、より人間に近い AI モデルはこの多様性をどのように考慮するのでしょうか?
以上がディープラーニングと人間の脳の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究
