目次
ツリー モデル VS ニューラル ネットワーク
ツリー モデルでの 1 と 0 の選択 VS ニューラル ネットワークの確率的選択
結論
ホームページ テクノロジー周辺機器 AI 機械学習: ツリー モデルの力を過小評価しないでください

機械学習: ツリー モデルの力を過小評価しないでください

Apr 18, 2023 pm 07:10 PM
機械学習 ニューラルネットワーク ツリーモデル

ニューラル ネットワークは、その複雑さのため、すべての機械学習の問題を解決するための「聖杯」とみなされることがよくあります。一方、ツリーベースの手法は、主にそのようなアルゴリズムの見かけの単純さのため、同様の注目を集めていません。ただし、これら 2 つのアルゴリズムは異なるように見えるかもしれませんが、同じコインの裏表のようなもので、どちらも重要です。

機械学習: ツリー モデルの力を過小評価しないでください

ツリー モデル VS ニューラル ネットワーク

ツリーベースの手法は、通常、ニューラル ネットワークよりも優れています。基本的に、ツリーベースの手法とニューラル ネットワーク ベースの手法は、どちらもサポート ベクター マシンやロジスティック回帰のような複雑な境界を介してデータセット全体を分割するのではなく、段階的な分解を通じて問題にアプローチするため、同じカテゴリに分類されます。 。

明らかに、ツリーベースの方法では、さまざまな特徴に沿って特徴空間を段階的にセグメント化し、情報取得を最適化します。あまり明らかではありませんが、ニューラル ネットワークも同様の方法でタスクにアプローチします。各ニューロンは、特徴空間の特定の部分 (複数のオーバーラップを含む) を監視します。入力がこの空間に入ると、特定のニューロンが活性化されます。

ニューラル ネットワークでは、このモデルのフィッティングを確率論的な観点から見るのに対し、ツリーベースの手法では決定論的な観点がとられます。いずれにしても、両方のコンポーネントは特徴空間のさまざまな部分に関連付けられているため、両方のパフォーマンスはモデルの深さに依存します。

コンポーネント (ツリー モデルの場合はノード、ニューラル ネットワークの場合はニューロン) が多すぎるモデルは過剰適合しますが、コンポーネントが少なすぎるモデルでは意味のある予測が得られません。 (どちらも、一般化を学習するのではなく、データ ポイントを記憶することから始まります。)

ニューラル ネットワークが特徴空間をどのように分割するかをより直観的に理解したい場合は、この紹介記事を読むことができます。普遍近似定理について: https://medium.com/analytics-vidhya/you-dont-question-neural-networks-until-you-under-the-universal-estimated- Theory-85b3e7677126。

ランダム フォレスト、勾配ブースティング、AdaBoost、ディープ フォレストなど、デシジョン ツリーには強力なバリエーションが多数ありますが、一般に、ツリーベースの手法は本質的にニューラル ネットワークのバージョンを簡略化したものです。 。

ツリーベースの手法は、垂直線と水平線を通じて問題を部分的に解決し、エントロピー (オプティマイザーと損失) を最小限に抑えます。ニューラル ネットワークは活性化関数を使用して問題を少しずつ解決します。

ツリーベースの方法は、確率論的ではなく決定論的です。これにより、自動機能選択などの優れた簡素化が実現します。

デシジョン ツリー内のアクティブ化された条件ノードは、ニューラル ネットワーク内のアクティブ化されたニューロン (情報フロー) に似ています。

ニューラル ネットワークは、パラメータのフィッティングを通じて入力を変換し、後続のニューロンの活性化を間接的にガイドします。デシジョン ツリーは、情報の流れをガイドするパラメーターを明示的に適合させます。 (これは、決定論と確率論の結果です。)

機械学習: ツリー モデルの力を過小評価しないでください

2 つのモデルの情報の流れは、ツリー モデル内だけで似ています。方法はより簡単です。

ツリー モデルでの 1 と 0 の選択 VS ニューラル ネットワークの確率的選択

もちろん、これは抽象的な結論であり、次のような結果になる可能性があります。物議を醸す可能性さえあります。確かに、この接続を確立するには多くの障害があります。いずれにせよ、これは、いつ、そしてなぜツリーベースの手法がニューラル ネットワークよりも優れているのかを理解する上で重要な部分です。

デシジョン ツリーの場合、表形式または表形式の構造化データを操作するのは自然なことです。ニューラル ネットワークを使用して表形式のデータに対して回帰と予測を実行するのはやりすぎであることにほとんどの人が同意するため、ここではいくつかの簡略化が行われます。 2 つのアルゴリズムの違いの主な原因は、確率ではなく 1 と 0 の選択です。したがって、ツリーベースの手法は、構造化データなど、確率が必要ない状況にもうまく適用できます。

たとえば、各数値にはいくつかの基本的な特徴があるため、ツリーベースのメソッドは MNIST データセットで良好なパフォーマンスを示します。確率を計算する必要がなく、問題はそれほど複雑ではありません。そのため、適切に設計されたツリー アンサンブル モデルは、最新の畳み込みニューラル ネットワークと同等かそれ以上のパフォーマンスを発揮できます。

一般に、「ツリーベースのメソッドはルールを覚えているだけ」と言われがちですが、それは正しいです。ニューラル ネットワークは、より複雑な確率ベースのルールを記憶できる点を除いて同じです。 x>3 のような条件に対して真/偽予測を明示的に与えるのではなく、ニューラル ネットワークは入力を非常に高い値に増幅し、シグモイド値 1 を生成するか、連続式を生成します。

一方、ニューラル ネットワークは非常に複雑なので、それを使ってできることはたくさんあります。畳み込み層と再帰層はどちらも、処理されるデータに確率計算の微妙なニュアンスが必要になることが多いため、ニューラル ネットワークの優れた変種です。

1 と 0 でモデル化できる画像はほとんどありません。デシジョン ツリー値は、多くの中間値 (例: 0.5) を持つデータセットを処理できないため、ピクセル値がほぼすべて黒または白であるが、他のデータセットのピクセル値はそうではない MNIST データセットでは良好にパフォーマンスします (例: ImageNet) 。同様に、テキストには決定的な用語で表現するには情報が多すぎ、異常が多すぎます。

これが、ニューラル ネットワークがこれらの分野で主に使用される理由であり、大量の画像とテキストが存在した初期の時期 (21 世紀初頭以前) にニューラル ネットワークの研究が停滞した理由です。データが入手できませんでした。ニューラル ネットワークの他の一般的な用途は、非常に大規模で確率を使用する必要がある YouTube 動画推奨アルゴリズムなどの大規模な予測に限定されます。

Zoom ビデオの背景をぼかすなどの高負荷なアプリケーションを構築している場合を除き、どの企業のデータ サイエンス チームもおそらくニューラル ネットワークではなくツリーベースのモデルを使用するでしょう。しかし、日常的なビジネス分類タスクでは、ツリーベースの手法は決定論的な性質によりこれらのタスクを軽量にし、その手法はニューラル ネットワークと同じです。

実際の多くの状況では、確率的モデリングよりも決定的モデリングの方が自然です。たとえば、ユーザーが電子商取引 Web サイトから商品を購入するかどうかを予測するには、ユーザーはルールに基づいた意思決定プロセスに自然に従うため、ツリー モデルが適しています。ユーザーの意思決定プロセスは次のようになります:

  1. これまでにこのプラットフォームで前向きなショッピング体験をしたことがありますか?その場合は、続行してください。
  2. このアイテムは今必要ですか? (たとえば、冬用にサングラスと水泳パンツを購入する必要がありますか?) その場合は、続けてください。
  3. 私のユーザー層に基づくと、これは購入に興味のある製品ですか? 「はい」の場合は、続行します。
  4. これは高すぎますか?そうでない場合は、続行してください。
  5. 他の顧客はこの製品を安心して購入できるほど高く評価していますか? 「はい」の場合は、続行します。

一般的に、人間はルールに基づいた構造化された意思決定プロセスに従います。このような場合、確率モデリングは不要です。

結論

  • ツリーベースの手法は、特性評価を実行するためのニューラル ネットワークの縮小バージョンと考えるのが最善です。より簡単な方法 分類、最適化、情報フローの転送など。
  • ツリーベースの手法とニューラル ネットワーク手法の使用上の主な違いは、決定的 (0/1) および確率的データ構造です。構造化 (表) データは、決定論的モデルを使用するとより適切にモデル化できます。
  • ツリー手法の威力を過小評価しないでください。

以上が機械学習: ツリー モデルの力を過小評価しないでくださいの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

See all articles