AI プロジェクトでこのような致命的な間違いを犯したことがありますか?
翻訳者|Bugatti
レビュアー|Sun Shujuan
データは人工知能 (AI) の中核であるため、AI と機械学習 (ML) は違います。システムが学習するには十分な良質のデータが必要であることに驚きました。一般に、AI または ML システムを適切にトレーニングするには、特に教師あり学習方法の場合、大量の高品質のデータが必要です。必要なデータの量は、実装されている AI のモデル、使用されるアルゴリズム、および内部データやサードパーティ データなどのその他の要因によって異なります。たとえば、ニューラル ネットワークのトレーニングには大量のデータが必要ですが、デシジョン ツリーやベイジアン分類器では高品質の結果を得るためにそれほど多くのデータは必要ありません。
つまり、データは多ければ多いほど良いと思うかもしれませんね?もう一度考えてみてください。大量のデータ (エクサバイトのデータであっても) を保有する組織は、より多くのデータを保有しても問題が期待どおりに解決されないことを認識しています。実際、データが増えると、さらに多くの疑問が生じます。所有するデータが増えれば増えるほど、より多くのデータをクリーニングして準備する必要があり、より多くのデータにラベルを付けて管理する必要があり、より多くのデータをセキュリティで保護し、バイアスを軽減し、その他の措置を講じる必要があります。データ量が増加し始めると、小さなプロジェクトがすぐに大規模なプロジェクトに変わる可能性があります。実際、大量のデータによってプロジェクトが中断されることがよくあります。
ビジネス上の問題を特定することと、その問題を解決するためにデータを整理することの間に欠けているステップは、どのデータが必要で、実際にどれだけ必要なのかを判断することであることは明らかです。十分なデータが必要ですが、多すぎてもいけません。それ以上でも以下でもなく、ちょうどいいのです。残念ながら、組織はデータを理解せずに AI プロジェクトに着手することがよくあります。組織は、データがどこにあるのか、データがすでにどのくらいの量あるのか、データがどのような状態にあるのか、データのどの特性が最も重要なのか、データの内部および外部での使用、データ アクセスの課題、要件など、多くの質問に答える必要があります。既存のデータやその他の重要な要素や質問を強化するため。これらの質問に答えなければ、AI プロジェクトは失敗したり、データの海に沈んでしまったりする可能性があります。
1. データをより深く理解する
必要なデータの量を理解するには、まずデータがシステム内のどこにあるかを理解する必要があります。 AIプロジェクトの位置づけの構造。データから得られる価値の増加を理解するのに役立つ視覚的な方法の 1 つは、情報、知識、理解、知恵を通じてデータ基盤がどのように変革されるかを示す「DIKUW ピラミッド」 (「DIKW ピラミッド」とも呼ばれます) です。より大きな価値。
強固なデータ基盤があれば、情報の次の層でより深い洞察を得ることができ、そのデータに関する基本的な質問に答えるのに役立ちます。情報の洞察を得るためにデータ間の基本的な接続を作成したら、その情報のパターンを見つけて、情報の部分がどのように結合しているかを理解して、より深い洞察を得ることができます。組織は、ナレッジレイヤーを構築し、これらのパターンが発生する理由を理解することで、より多くの価値を得ることができ、根底にあるパターンの理解に役立ちます。最後に、情報に関する決定の原因と結果を深く理解することで、知能レベルで情報から最大限の価値を引き出すことができます。
最近の AI の波は、機械学習が情報層の上にあるパターンを識別するための洞察を提供するため、知識層に最も重点を置いています。残念ながら、パターンを見つけるだけでは推論を行うのに十分ではないため、機械学習は理解層でボトルネックに遭遇します。機械学習はありますが、パターンが発生する理由を理解するための機械推論はありません。チャットボットと対話するたびに、この制限が発生します。機械学習ベースの自然言語処理 (NLP) は、人間の音声を理解して意図を推測することに非常に優れていますが、理解して推論しようとすると限界に遭遇します。たとえば、音声アシスタントに「明日レインコートを着たいかどうか」と尋ねても、音声アシスタントは天気について尋ねていることを理解できません。音声アシスタントは実際の雨が何であるかを理解できないため、この洞察を機械に提供するのは人間にかかっています。
#2. 失敗を避けるためにデータを常に意識する ビッグデータは、大量のデータの処理方法を私たちに教えてくれました。データがどのように保存されるかだけでなく、そのすべてのデータがどのように処理、操作、分析されるかについても同様です。機械学習は、組織が収集するさまざまな種類の非構造化データ、半構造化データ、または構造化データを処理することで、さらに多くの価値を付加します。実際、この最近の AI の波は、実際にはビッグデータ主導型の分析の波です。 しかし、まさにこの理由から、一部の組織は AI に関して大きな打撃を受けています。データ中心の観点から AI プロジェクトを実行するのではなく、機能面に重点を置いています。 AI プロジェクトを推進し、致命的なミスを回避するには、組織は AI と機械学習だけでなく、ビッグデータのいくつかの「V」についてもよく理解する必要があります。データの量だけでなく、データの性質も重要です。ビッグデータの V には次のようなものがあります:- 数量: 所有するビッグデータの絶対量。
- 速度: ビッグデータが変化する速度。 AIの活用を成功させるということは、高速データにAIを適用することを意味します。
- 多様性: データには、データベースなどの構造化データ、請求書などの半構造化データ、電子メール、画像、ビデオ ファイルなどの非構造化データなど、さまざまな形式があります。成功した AI システムは、この多様性に対応できます。
- 信頼性: これは、データの品質と正確さ、およびそのデータをどの程度信頼できるかを指します。特にデータ駆動型 AI システムでは、ガベージインとガベージアウトが発生します。したがって、AI システムを成功させるには、さまざまなデータ品質を処理できる必要があります。
ビッグ データ プロジェクトを管理してきた数十年の経験により、AI で成功している組織は主にビッグ データで成功しています。 AI プロジェクトの失敗を経験した組織は、多くの場合、アプリケーション開発の考え方で AI の問題に取り組みます。
3. 多すぎる誤ったデータと不十分な正しいデータが AI プロジェクトを滅ぼしている
AI プロジェクトは正しく開始されたものの、必要なデータの不足、理解の欠如そして、実際の問題を解決することが欠けていると、AI プロジェクトが潰れてしまいます。組織は必要なデータとデータ品質を真に理解せずに前進を続けており、それが大きな課題を生み出しています。
組織がこのようなデータの間違いを犯す理由の 1 つは、アジャイルまたはアプリケーション開発手法を使用する以外に、AI プロジェクトに対する実際のアプローチを持っていないことです。しかし、成功している組織は、データ中心のアプローチの使用には、プロジェクト アプローチの最初の段階としてデータの理解が含まれていることを認識しています。 20 年以上前から存在する CRISP-DM アプローチでは、ビジネス ニーズが特定された後の次のステップとしてデータの理解が指定されています。 CRISP-DM をベースにし、アジャイル手法と組み合わせた AI (CPMAI) アプローチでは、第 2 フェーズでデータを理解する必要があります。 AI プロジェクトは結局のところデータ プロジェクトであるため、他の成功するアプローチでも、プロジェクトの早い段階でデータを理解する必要があります。データを理解せずにプログラムに取り組む場合、データに基づいて成功するプログラムをどのように構築すればよいでしょうか?これは間違いなく避けたい致命的な間違いです。
元のリンク: https://www.forbes.com/sites/cognitiveworld/2022/08/20/are-you-making-these-deadly-missing-with-your -ai-projects/?sh=352955946b54
以上がAI プロジェクトでこのような致命的な間違いを犯したことがありますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









vue.jsのオブジェクトに文字列を変換する場合、標準のjson文字列にはjson.parse()が推奨されます。非標準のJSON文字列の場合、文字列は正規表現を使用して処理し、フォーマットまたはデコードされたURLエンコードに従ってメソッドを削減できます。文字列形式に従って適切な方法を選択し、バグを避けるためにセキュリティとエンコードの問題に注意してください。

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

700万のレコードを効率的に処理し、地理空間技術を使用したインタラクティブマップを作成します。この記事では、LaravelとMySQLを使用して700万を超えるレコードを効率的に処理し、それらをインタラクティブなマップの視覚化に変換する方法について説明します。最初の課題プロジェクトの要件:MySQLデータベースに700万のレコードを使用して貴重な洞察を抽出します。多くの人は最初に言語をプログラミングすることを検討しますが、データベース自体を無視します。ニーズを満たすことができますか?データ移行または構造調整は必要ですか? MySQLはこのような大きなデータ負荷に耐えることができますか?予備分析:キーフィルターとプロパティを特定する必要があります。分析後、ソリューションに関連している属性はわずかであることがわかりました。フィルターの実現可能性を確認し、検索を最適化するためにいくつかの制限を設定しました。都市に基づくマップ検索

MySQLの起動が失敗する理由はたくさんあり、エラーログをチェックすることで診断できます。一般的な原因には、ポートの競合(ポート占有率をチェックして構成の変更)、許可の問題(ユーザー許可を実行するサービスを確認)、構成ファイルエラー(パラメーター設定のチェック)、データディレクトリの破損(テーブルスペースの復元)、INNODBテーブルスペースの問題(IBDATA1ファイルのチェック)、プラグインロード障害(エラーログのチェック)が含まれます。問題を解決するときは、エラーログに基づいてそれらを分析し、問題の根本原因を見つけ、問題を防ぐために定期的にデータをバックアップする習慣を開発する必要があります。

概要:Vue.js文字列配列をオブジェクト配列に変換するための次の方法があります。基本方法:定期的なフォーマットデータに合わせてマップ関数を使用します。高度なゲームプレイ:正規表現を使用すると、複雑な形式を処理できますが、慎重に記述して考慮する必要があります。パフォーマンスの最適化:大量のデータを考慮すると、非同期操作または効率的なデータ処理ライブラリを使用できます。ベストプラクティス:コードスタイルをクリアし、意味のある変数名とコメントを使用して、コードを簡潔に保ちます。

Vue axiosのタイムアウトを設定するために、Axiosインスタンスを作成してタイムアウトオプションを指定できます。グローバル設定:Vue.Prototype。$ axios = axios.create({Timeout:5000});単一のリクエストで:this。$ axios.get( '/api/users'、{timeout:10000})。

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

リモートシニアバックエンジニアの求人事業者:サークル場所:リモートオフィスジョブタイプ:フルタイム給与:$ 130,000- $ 140,000職務記述書サークルモバイルアプリケーションとパブリックAPI関連機能の研究開発に参加します。ソフトウェア開発ライフサイクル全体をカバーします。主な責任は、RubyonRailsに基づいて独立して開発作業を完了し、React/Redux/Relay Front-Endチームと協力しています。 Webアプリケーションのコア機能と改善を構築し、機能設計プロセス全体でデザイナーとリーダーシップと緊密に連携します。肯定的な開発プロセスを促進し、反復速度を優先します。 6年以上の複雑なWebアプリケーションバックエンドが必要です
