一般的な次元削減テクノロジーの比較: 情報の整合性を維持しながらデータ次元を削減する実現可能性分析
この記事では、機械学習タスクにおける表形式データに対するさまざまな次元削減手法の有効性を比較します。次元削減手法をデータセットに適用し、回帰分析と分類分析を通じてその有効性を評価します。さまざまなドメインに関連する UCI から取得したさまざまなデータセットに次元削減手法を適用します。合計 15 のデータセットが選択され、そのうち 7 つは回帰に使用され、8 つは分類に使用されます。
この記事を読みやすく理解しやすくするために、1 つのデータセットの前処理と分析のみを示します。実験はデータセットをロードすることから始まります。データ セットはトレーニング セットとテスト セットに分割され、平均が 0、標準偏差が 1 になるように正規化されます。
次元削減手法がトレーニング データに適用され、同じパラメーターを使用してテスト セットが次元削減のために変換されます。回帰では主成分分析 (PCA) と特異値分解 (SVD) を使用して次元削減を行い、分類では線形判別分析 (LDA) を使用します。機械学習モデルがトレーニングされる テストが実施され、さまざまな次元削減方法を通じて取得されたさまざまなデータセットでさまざまなモデルのパフォーマンスが比較されました。
データ処理
import pandas as pd ## for data manipulation df = pd.read_excel(r'RegressionAirQualityUCI.xlsx') print(df.shape) df.head()
データセットには 15 列が含まれており、そのうちの 1 つが含まれています。ラベルを予測する必要があるということです。次元削減を続行する前に、日付と時刻の列も削除されます。
X = df.drop(['CO(GT)', 'Date', 'Time'], axis=1) y = df['CO(GT)'] X.shape, y.shape #Output: ((9357, 12), (9357,))
トレーニングでは、次元削減手法と次元削減特徴空間でトレーニングされた機械学習モデルの有効性を評価できるように、データセットをトレーニング セットとテスト セットに分割する必要があります。 。モデルはトレーニング セットを使用してトレーニングされ、パフォーマンスはテスト セットを使用して評価されます。
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X_train.shape, X_test.shape, y_train.shape, y_test.shape #Output: ((7485, 12), (1872, 12), (7485,), (1872,))
データ セットに対して次元削減手法を使用する前に、入力データをスケーリングして、すべてのフィーチャが同じスケールになるようにすることができます。一部の次元削減手法では、データが正規化されているかどうかに応じて出力が変更され、フィーチャのサイズに影響される可能性があるため、これは線形モデルにとって重要です。
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) X_train.shape, X_test.shape
主成分分析 (PCA)
線形次元削減の PCA 手法は、データの分散を可能な限り維持しながらデータの次元を削減します。
ここでは、Python sklearn.decomposition モジュールの PCA メソッドを使用します。保持するコンポーネントの数はこのパラメータで指定され、この数はより小さい特徴空間に含まれる次元の数に影響します。別の方法として、保持する目標分散を設定することもできます。これにより、キャプチャされたデータの分散量に基づいて成分の数が決まります。ここでは 0.95
from sklearn.decomposition import PCA pca = PCA(n_compnotallow=0.95) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) X_train_pca
# に設定します。 # #上記の特徴は何を表していますか? 主成分分析 (PCA) は、データを低次元空間に投影し、データ内の差異をできるだけ多く保持しようとします。これは特定の操作に役立つ場合がありますが、データの理解がさらに難しくなる可能性もあります。 , PCA は、初期特徴の線形融合であるデータ内の新しい軸を識別できます。
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_compnotallow=int(X_train.shape[1]*0.33))
X_train_svd = svd.fit_transform(X_train)
X_test_svd = svd.transform(X_test)
X_train_svd
ログイン後にコピー
from sklearn.decomposition import TruncatedSVD svd = TruncatedSVD(n_compnotallow=int(X_train.shape[1]*0.33)) X_train_svd = svd.fit_transform(X_train) X_test_svd = svd.transform(X_test) X_train_svd
回帰モデルのトレーニング
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import r2_score, mean_squared_error
import time
ログイン後にコピー
train_test_ML: この関数は、モデルのトレーニングとテストに関連する反復タスクを完了します。すべてのモデルのパフォーマンスは、rmse と r2_score を計算することによって評価されました。すべての詳細と計算値を含むデータセットを返します。また、各モデルがそれぞれのデータセットでトレーニングおよびテストにかかった時間も記録されます。 import numpy as np from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import r2_score, mean_squared_error import time
def train_test_ML(dataset, dataform, X_train, y_train, X_test, y_test): temp_df = pd.DataFrame(columns=['Data Set', 'Data Form', 'Dimensions', 'Model', 'R2 Score', 'RMSE', 'Time Taken']) for i in [LinearRegression, KNeighborsRegressor, SVR, DecisionTreeRegressor, RandomForestRegressor, GradientBoostingRegressor]: start_time = time.time() reg = i().fit(X_train, y_train) y_pred = reg.predict(X_test) r2 = np.round(r2_score(y_test, y_pred), 2) rmse = np.round(np.sqrt(mean_squared_error(y_test, y_pred)), 2) end_time = time.time() time_taken = np.round((end_time - start_time), 2) temp_df.loc[len(temp_df)] = [dataset, dataform, X_train.shape[1], str(i).split('.')[-1][:-2], r2, rmse, time_taken] return temp_df
original_df = train_test_ML('AirQualityUCI', 'Original', X_train, y_train, X_test, y_test) original_df
元のデータを入力すると、KNN リグレッサーとランダム フォレストが比較的良好にパフォーマンスし、ランダムのトレーニング時間が短縮されることがわかります。森が一番長い。
pca_df = train_test_ML('AirQualityUCI', 'PCA Reduced', X_train_pca, y_train, X_test_pca, y_test) pca_df
与原始数据集相比,不同模型的性能有不同程度的下降。梯度增强回归和支持向量回归在两种情况下保持了一致性。这里一个主要的差异也是预期的是模型训练所花费的时间。与其他模型不同的是,SVR在这两种情况下花费的时间差不多。
SVD
svd_df = train_test_ML('AirQualityUCI', 'SVD Reduced', X_train_svd, y_train, X_test_svd, y_test) svd_df
与PCA相比,SVD以更大的比例降低了维度,随机森林和梯度增强回归器的表现相对优于其他模型。
回归模型分析
对于这个数据集,使用主成分分析时,数据维数从12维降至5维,使用奇异值分析时,数据降至3维。
- 就机器学习性能而言,数据集的原始形式相对更好。造成这种情况的一个潜在原因可能是,当我们使用这种技术降低维数时,在这个过程中会发生信息损失。
- 但是线性回归、支持向量回归和梯度增强回归在原始和PCA案例中的表现是一致的。
- 在我们通过SVD得到的数据上,所有模型的性能都下降了。
- 在降维情况下,由于特征变量的维数较低,模型所花费的时间减少了。
将类似的过程应用于其他六个数据集进行测试,得到以下结果:
我们在各种数据集上使用了SVD和PCA,并对比了在原始高维特征空间上训练的回归模型与在约简特征空间上训练的模型的有效性
- 原始数据集始终优于由降维方法创建的低维数据。这说明在降维过程中可能丢失了一些信息。
- 当用于更大的数据集时,降维方法有助于显著减少数据集中的特征数量,从而提高机器学习模型的有效性。对于较小的数据集,改影响并不显著。
- 模型的性能在original和pca_reduced两种模式下保持一致。如果一个模型在原始数据集上表现得更好,那么它在PCA模式下也会表现得更好。同样,较差的模型也没有得到改进。
- 在SVD的情况下,模型的性能下降比较明显。这可能是n_components数量选择的问题,因为太小数量肯定会丢失数据。
- 决策树在SVD数据集时一直是非常差的,因为它本来就是一个弱学习器
训练分类模型
对于分类我们将使用另一种降维方法:LDA。机器学习和模式识别任务经常使用被称为线性判别分析(LDA)的降维方法。这种监督学习技术旨在最大化几个类或类别之间的距离,同时将数据投影到低维空间。由于它的作用是最大化类之间的差异,因此只能用于分类任务。
from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
继续我们的训练方法
def train_test_ML2(dataset, dataform, X_train, y_train, X_test, y_test): temp_df = pd.DataFrame(columns=['Data Set', 'Data Form', 'Dimensions', 'Model', 'Accuracy', 'F1 Score', 'Recall', 'Precision', 'Time Taken']) for i in [LogisticRegression, KNeighborsClassifier, SVC, DecisionTreeClassifier, RandomForestClassifier, GradientBoostingClassifier]: start_time = time.time() reg = i().fit(X_train, y_train) y_pred = reg.predict(X_test) accuracy = np.round(accuracy_score(y_test, y_pred), 2) f1 = np.round(f1_score(y_test, y_pred, average='weighted'), 2) recall = np.round(recall_score(y_test, y_pred, average='weighted'), 2) precision = np.round(precision_score(y_test, y_pred, average='weighted'), 2) end_time = time.time() time_taken = np.round((end_time - start_time), 2) temp_df.loc[len(temp_df)] = [dataset, dataform, X_train.shape[1], str(i).split('.')[-1][:-2], accuracy, f1, recall, precision, time_taken] return temp_df
开始训练
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis lda = LinearDiscriminantAnalysis() X_train_lda = lda.fit_transform(X_train, y_train) X_test_lda = lda.transform(X_test)
预处理、分割和数据集的缩放,都与回归部分相同。在对8个不同的数据集进行新联后我们得到了下面结果:
分类模型分析
我们比较了上面所有的三种方法SVD、LDA和PCA。
- LDA数据集通常优于原始形式的数据和由其他降维方法创建的低维数据,因为它旨在识别最有效区分类的特征的线性组合,而原始数据和其他无监督降维技术不关心数据集的标签。
- 降维技术在应用于更大的数据集时,可以极大地减少了数据集中的特征数量,这提高了机器学习模型的效率。在较小的数据集上,影响不是特别明显。除了LDA(它在这些情况下也很有效),因为它们在一些情况下,如二元分类,可以将数据集的维度减少到只有一个。
- 当我们在寻找一定的性能时,LDA可以是分类问题的一个非常好的起点。
- SVD与回归一样,模型的性能下降很明显。需要调整n_components的选择。
总结
我们比较了一些降维技术的性能,如奇异值分解(SVD)、主成分分析(PCA)和线性判别分析(LDA)。我们的研究结果表明,方法的选择取决于特定的数据集和手头的任务。
回帰タスクの場合、一般に PCA の方が SVD よりも優れたパフォーマンスを発揮することがわかります。分類の場合、LDA は SVD や PCA、さらには元のデータセットよりも優れています。線形判別分析 (LDA) が分類タスクにおいて主成分分析 (PCA) を常に上回ることが重要ですが、これは一般に LDA の方が優れた技術であることを意味するものではありません。これは、LDA がラベル付きデータに依存してデータ内の最も識別的な特徴を特定する教師あり学習アルゴリズムであるのに対し、PCA はラベル付きデータを必要とせず、可能な限り多くの分散を維持しようとする教師なし手法であるためです。したがって、PCA は教師なしタスクや解釈可能性が重要な状況に適している可能性があり、LDA はラベル付きデータを含むタスクに適している可能性があります。
次元削減手法はデータセット内の特徴の数を減らし、機械学習モデルの効率を向上させるのに役立ちますが、モデルのパフォーマンスと結果の解釈可能性への潜在的な影響を考慮することが重要です。
この記事の完全なコード:
https://github.com/salmankhi/DimensionalityReduction/blob/main/Notebook_25373.ipynb
以上が一般的な次元削減テクノロジーの比較: 情報の整合性を維持しながらデータ次元を削減する実現可能性分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。
