画像認識: 畳み込みニューラル ネットワーク
この記事は WeChat 公開アカウント「情報時代に生きる」から転載したものであり、著者は情報時代に生きています。この記事を転載するには、情報時代の暮らしの公開アカウントまでご連絡ください。
畳み込みニューラル ネットワーク (CNN) は特別なディープ フィードフォワード ネットワークであり、通常、データ入力層、畳み込み層、活性化層、ダウンサンプリング層が含まれます。接続されたレイヤー。
#畳み込み層は畳み込みニューラル ネットワークの重要な単位であり、一連のフィルタリング データで構成されます。コンボリューションカーネルの重み付けは、画像の局所領域とコンボリューションカーネルの重み付けの重み付け和の線形重ね合わせ処理です。画像 I が入力として使用され、2 次元コンボリューション カーネル K がコンボリューションに使用されます。コンボリューション プロセスは次のように表現できます:
このうち、I(i,j) は位置 (i,j) の画像の値、S(i,j) は畳み込み演算後に得られる特徴マップです。
アクティベーション畳み込み演算は線形であり、線形マッピングのみを実行でき、表現能力は限られています。したがって、非線形写像問題に対処するには、非線形活性化関数を導入する必要があります。さまざまな非線形問題に対処するために、導入される活性化関数も異なります。一般的に使用されるのは、sigmoid、tanh、relu などです。
#シグモイド関数の式は次のとおりです:
全結合層は通常、畳み込みニューラル ネットワークの最後に配置され、層間のすべてのニューロンには重み付けされた接続があります。目的は、ネットワークで学習されたすべての特徴をサンプルのラベル空間にマッピングしてカテゴリを判断することです。 Softmax 関数は通常、分類器の出力としてニューラル ネットワークの最後の層で使用され、softmax 関数によって出力される各値の範囲は (0, 1) です。
VGGNet、ResNet、AlexNet など、画像認識の分野で広く使用されている古典的で効率的な CNN モデルがいくつかあります。
以上が画像認識: 畳み込みニューラル ネットワークの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











現在の深層学習手法は、モデルの予測結果が実際の状況に最も近くなるように、最適な目的関数を設計することに重点を置いています。同時に、予測に十分な情報を取得するには、適切なアーキテクチャを設計する必要があります。既存の方法は、入力データがレイヤーごとの特徴抽出と空間変換を受けると、大量の情報が失われるという事実を無視しています。この記事では、ディープネットワークを介してデータを送信する際の重要な問題、つまり情報のボトルネックと可逆機能について詳しく説明します。これに基づいて、深層ネットワークが複数の目的を達成するために必要なさまざまな変化に対処するために、プログラマブル勾配情報 (PGI) の概念が提案されています。 PGI は、目的関数を計算するためのターゲット タスクに完全な入力情報を提供することで、ネットワークの重みを更新するための信頼できる勾配情報を取得できます。さらに、新しい軽量ネットワーク フレームワークが設計されています。

グラフ ニューラル ネットワーク (GNN) は、近年急速かつ驚くべき進歩を遂げています。グラフ ニューラル ネットワークは、グラフ ディープ ラーニング、グラフ表現学習 (グラフ表現学習)、または幾何学的ディープ ラーニングとも呼ばれ、機械学習、特にディープ ラーニングの分野で最も急速に成長している研究トピックです。この共有のタイトルは「GNN の基礎、フロンティア、および応用」です。主に、学者の Wu Lingfei、Cui Peng、Pei Jian、Zhao によって編纂された包括的な書籍「グラフ ニューラル ネットワークの基礎、フロンティア、およびアプリケーション」の一般的な内容を紹介します。梁さん。 1. グラフ ニューラル ネットワークの概要 1. なぜグラフを学ぶのですか?グラフは、複雑なシステムを記述およびモデル化するための汎用言語です。グラフ自体は複雑ではなく、主にエッジとノードで構成されています。ノードを使用してモデル化したい任意のオブジェクトを表現し、エッジを使用して 2 つのオブジェクトを表現できます。

現在主流の AI チップは主に GPU、FPGA、ASIC の 3 つのカテゴリに分類されます。 GPU と FPGA はどちらも比較的成熟した初期段階のチップ アーキテクチャであり、汎用チップです。 ASIC は、特定の AI シナリオ向けにカスタマイズされたチップです。業界は、CPU が AI コンピューティングには適していないことを確認していますが、CPU は AI アプリケーションにも不可欠です。 GPU ソリューション アーキテクチャ GPU と CPU の比較 CPU はフォン ノイマン アーキテクチャに従っており、そのコアはプログラム/データのストレージとシリアル シーケンシャル実行です。したがって、CPU アーキテクチャは、記憶装置 (Cache) と制御装置 (Control) を配置するために大きなスペースを必要としますが、演算装置 (ALU) が占める割合は小さいため、CPU は大規模な処理を実行します。並列コンピューティング。

マインクラフトにおいて、レッドストーンは非常に重要なアイテムです。これはゲーム内でユニークなマテリアルであり、スイッチ、レッドストーン トーチ、レッドストーン ブロックは、ワイヤーやオブジェクトに電気のようなエネルギーを供給できます。レッドストーン回路は、他の機械を制御または起動するための構造を構築するために使用できます。回路自体は、プレイヤーによる手動の起動に応答するように設計することも、信号を繰り返し出力したり、クリーチャーの動きなどの非プレイヤーによって引き起こされる変化に応答したりすることもできます落下、植物の成長、昼と夜など。したがって、私の世界では、レッドストーンは、自動ドア、照明スイッチ、ストロボ電源などの単純な機械から、巨大なエレベーター、自動農場、小型ゲームプラットフォーム、さらにはゲーム内マシンに至るまで、非常に多くの種類の機械を制御できます。 。最近はB局UPメイン@

視覚タスク (画像分類など) の深層学習モデルは、通常、単一の視覚領域 (自然画像やコンピューター生成画像など) からのデータを使用してエンドツーエンドでトレーニングされます。一般に、複数のドメインのビジョン タスクを完了するアプリケーションは、個別のドメインごとに複数のモデルを構築し、それらを個別にトレーニングする必要があります。データは異なるドメイン間で共有されません。推論中、各モデルは特定のドメインの入力データを処理します。たとえそれらが異なる分野を指向しているとしても、これらのモデル間の初期層のいくつかの機能は類似しているため、これらのモデルの共同トレーニングはより効率的です。これにより、遅延と消費電力が削減され、各モデル パラメーターを保存するためのメモリ コストが削減されます。このアプローチはマルチドメイン学習 (MDL) と呼ばれます。さらに、MDL モデルは単一モデルよりも優れたパフォーマンスを発揮します。

傘が飛ばされるほど風が強いとき、ドローンは次のように安定しています: 風に乗って飛行することは、空中で飛行することの一部です。大きなレベルから見ると、パイロットが航空機を着陸させるとき、風速は小規模なレベルでは、強風もドローンの飛行に影響を与える可能性があります。現在、ドローンは無風の制御された条件下で飛行するか、人間がリモコンを使用して操作します。ドローンは研究者によって制御され、大空で編隊を組んで飛行しますが、これらの飛行は通常、理想的な条件と環境の下で行われます。ただし、ドローンが荷物の配達など、必要ではあるが日常的なタスクを自律的に実行するには、風の状況にリアルタイムで適応できなければなりません。風を受けて飛行する際のドローンの操作性を高めるために、カリフォルニア工科大学のエンジニアのチームが

論文のアドレス: https://arxiv.org/abs/2307.09283 コードのアドレス: https://github.com/THU-MIG/RepViTRepViT は、モバイル ViT アーキテクチャで優れたパフォーマンスを発揮し、大きな利点を示します。次に、この研究の貢献を検討します。記事では、主にモデルがグローバル表現を学習できるようにするマルチヘッド セルフ アテンション モジュール (MSHA) のおかげで、軽量 ViT は一般的に視覚タスクにおいて軽量 CNN よりも優れたパフォーマンスを発揮すると述べられています。ただし、軽量 ViT と軽量 CNN のアーキテクチャの違いは十分に研究されていません。この研究では、著者らは軽量の ViT を効果的なシステムに統合しました。

「ComputerWorld」誌はかつて、IBM がエンジニアが必要な数式を書いて提出できる新しい言語 FORTRAN を開発したため、「プログラミングは 1960 年までに消滅するだろう」という記事を書きました。コンピューターを実行すればプログラミングは終了します。画像 数年後、私たちは新しいことわざを聞きました: ビジネスマンは誰でもビジネス用語を使って問題を説明し、コンピュータに何をすべきかを伝えることができます。COBOL と呼ばれるこのプログラミング言語を使用することで、企業はもはやプログラマーを必要としません。その後、IBM は従業員がフォームに記入してレポートを作成できるようにする RPG と呼ばれる新しいプログラミング言語を開発したと言われており、会社のプログラミング ニーズのほとんどはこれで完了できます。
