ホームページ テクノロジー周辺機器 AI ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

Apr 29, 2023 pm 08:10 PM
モデル 研究

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

  • #プロジェクトのホームページ: https://scene-dreamer.github.io/
  • #コード: https://github.com/FrozenBurning/SceneDreamer
  • ペーパー: https://arxiv.org/abs/2302.01330
  • オンライン デモ: https://huggingface.co/spaces/FrozenBurning/SceneDreamer

メタバースにおける 3D クリエイティブ ツールの需要の高まりに応えるため、3D シーンの生成が最近大きな注目を集めています。 3D コンテンツ作成の中核は、2D 観察から 3D 表現を復元することを目的とした逆グラフィックスです。 3D アセットの作成に必要なコストと労力を考慮すると、3D コンテンツ作成の最終目標は、インターネット上の膨大な 2D 画像から 3D 生成モデルを学習することになります。 3D 知覚の生成モデルに関する最近の研究では、この問題にある程度対処しており、研究のほとんどは 2D 画像データを活用してオブジェクト中心のコンテンツ (顔、人体、オブジェクトなど) を生成しています。ただし、この種の生成タスクの観測空間は有限領域内にあり、生成されたターゲットは 3 次元空間の限られた領域を占めます。ここで疑問が生じます。膨大なインターネット 2D 画像から境界のないシーンの 3D 生成モデルを学習できるでしょうか?たとえば、広い範囲をカバーし、無限に拡張できる鮮やかな自然の風景です (下図を参照)。

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

#この記事では、南洋理工大学

S-Lab の研究者が新しいフレームワーク SceneDreamer # # を提案しました# 、ラベルのない大量の自然画像から境界のない 3 次元シーンの生成モデルを学習することに重点を置いています。シーン ノイズとスタイル ノイズをサンプリングすることにより、SceneDreamer は、非常に高い 3 次元の一貫性を維持しながら、自然シーンの多様なスタイルをレンダリングすることができ、カメラがシーン内を自由に歩き回ることができます。 このような目標を達成するには、次の 3 つの課題に直面します。

1) 境界のないシーンには効率的な 3 次元表現が欠けています: 境界がありません。シーンは多くの場合、任意の大きなユークリッド空間を占有するため、効率的で表現力豊かな基礎となる 3D 表現の重要性が強調されます。

2) コンテンツの位置合わせの欠如: 既存の 3D 生成作業では、位置合わせプロパティ (顔、人体、一般的なオブジェクトなど) を持つデータ セットを使用します。シーンは通常、同様のセマンティクス、同様のスケール位置と方向を持ちます。ただし、ラベルのない大規模な 2D 画像では、さまざまなオブジェクトやシーンが非常に異なるセマンティクスを持ち、スケール、位置、向きが可変であることがよくあります。この調整の欠如により、生成モデルのトレーニングが不安定になる可能性があります。

3) カメラ ポーズ事前分布の欠如: 3D 生成モデルは、画像から 3D 表現への逆レンダリング プロセスを実装するために、正確なカメラ ポーズまたはカメラ ポーズ分布の事前分布に依存します。しかし、インターネット上の自然画像はさまざまなシーンや画像ソースからのものであるため、カメラのポーズに関する正確な情報や事前情報を取得することは不可能です。

この目的を達成するために、我々は原則に基づいた敵対的学習フレームワーク SceneDreamer を提案します。このフレームワークは、大量のラベルのない自然画像から無制限の 3 次元シーンを生成することを学習します。このフレームワークは 3 つの主要モジュールで構成されています: 1) 効率的で表現力豊かな鳥瞰図 (BEV) 3D シーン表現、2) シーンの普遍的な表現を学習する生成ニューラル ハッシュ グリッド、3) スタイル主導のボリューム レンダラー、トレーニングは、敵対的学習を通じて 2 次元画像から直接実行されます。

上図は、SceneDreamer の主な構造を示しています。推論プロセス中に、シーン構造を表すシンプレックス ノイズ ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます とシーン スタイルを表すガウス ノイズ ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます を入力としてランダムにサンプリングでき、モデルはレンダリングできます。カメラの自由な動きをサポートしながら、大規模な 3 次元シーンを実現します。まず、シーン ノイズワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びますから高さマップとセマンティック マップで構成される BEV シーン表現を取得します。次に、BEV 表現を使用してローカル 3D シーン ウィンドウを明示的に構築し、カメラ サンプリングを実行すると同時に、BEV 表現をシーンの特徴ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びますにエンコードします。サンプリング ポイント ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます とシーンの特徴 ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます の座標を使用して、生成ニューラル ハッシュ グリッドによってエンコードされた高次元空間をクエリし、空間差分とシーン差分潜在力を取得します。変数ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます#。 最後に、スタイル ノイズによって変調されたボリューム レンダラーを通じてカメラ ライトの潜在変数を統合し、最終的にレンダリングされた 2 次元画像を取得します。

境界のない 3D シーン生成を学ぶためには、シーンを効率的かつ高品質に表現することが望まれます。我々は、セマンティックマップとハイトマップからなるBEV表現を用いて大規模な3次元シーンを表現することを提案する。具体的には、シーンノイズからノンパラメトリックマップ構築手法により鳥瞰図のハイトマップとセマンティックマップを取得します。高さマップはシーン表面点の高さ情報を記録し、意味マップは対応する点の意味ラベルを記録します。私たちが使用する BEV 表現は、セマンティック マップと高さマップで構成されており、1) n^2 の複雑さで 3 次元シーンを表現でき、2) 3 次元の点に対応するセマンティクスを取得できるため、次のことを行うことができます。コンテンツの配置の問題。 3) 無限のシーンを合成するためのスライディング ウィンドウの使用をサポートし、トレーニング中の固定シーン解像度によって引き起こされる汎化問題を回避します。

シーン間を一般化できる 3 次元表現をエンコードするには、敵対的学習のトレーニングを容易にするために、空間的な 3 次元シーン表現を潜在空間にエンコードする必要があります。大規模な境界のないシーンの場合、通常、レンダリングに意味があるのは表面の可視点だけであることに注意してください。これは、そのパラメトリック フォームがコンパクトでまばらである必要があることを意味します。トライプレーンまたは 3 次元畳み込みモデル空間全体などの既存の方法では、目に見えない表面点のモデリングに大量のモデル容量が浪費されます。 3D 再構成タスクにおけるニューラル ハッシュ グリッドの成功に触発され、空間的にコンパクトで効率的なその特性を生成タスクに一般化し、生成ニューラル ハッシュ グリッドを使用してシーン全体の 3D 空間特徴をモデル化することを提案します。具体的には、ハッシュ関数 F_theta を使用して、シーンの特徴 f_s と空間点座標 x をマルチスケール混合の学習可能なパラメーターにマッピングします。

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

レンダリングの 3 次元の一貫性を確保するために、ボリューム レンダリングに基づいたレンダリング ネットワークを使用して、3 次元空間の特徴を 2 次元画像にマッピングします。カメラ ライト上の点については、生成ハッシュ グリッドをクエリして対応する特徴 f_x を取得し、スタイル ノイズによって変調されたマルチレイヤー MLP を使用して、対応する点の色とボリューム密度を取得し、最後にボリューム レンダリングを使用して、 point カメラ光線上のすべての点は、対応するピクセルの色に統合されます。

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

#フレームワーク全体は、敵対的学習を通じて 2D 画像上でエンドツーエンドで直接トレーニングされます。ジェネレーターは前述のボリューム レンダラーであり、ディスクリミネーターには、BEV 表現からカメラに投影されたセマンティック マップに基づいて実際の画像とレンダリングされた画像を区別するために、セマンティックを認識したディスクリミティブ ネットワークを使用します。詳細については、論文を参照してください。

トレーニングが完了すると、シーン ノイズとスタイル ノイズをランダムにサンプリングすることで、適切な深度情報と 3D 一貫性を備えたさまざまな 3D シーンを生成でき、自由なカメラ軌跡のレンダリングをサポートします。

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

#スライディング ウィンドウ推論モードを通じて、トレーニング空間解像度をはるかに超える超大型の境界のない画像を生成できます。シーン。以下の図は、トレーニング空間解像度が 10 倍で、シーンとスタイルの両方の次元でスムーズな補間が行われたシーンを示しています。

同様の補間スムーズ トランジションの結果と同様に、フレームワークは分離モードをサポートしています。これは、補間のためにシーンまたはスタイルを個別に修正することで、潜在空間の意味論的な豊かさを反映します。

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます


私たちの方法の 3 次元の一貫性を検証するために、円形のカメラの軌跡を使用して任意のシーンをレンダリングし、COLMAP を 3 次元の再構成に再利用します。これにより、より良いシーンの点群と一致するカメラを取得できます。ポーズは、この方法が 3 次元の一貫性を確保しながらさまざまな 3 次元シーンを生成できることを示しています。

ワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びます

この作品は、大規模な 2D 画像から無制限の 3D シーンを生成するモデルである SceneDreamer を提案しています。 3D の一貫性を維持し、自由なカメラ軌道をサポートしながら、ノイズから多様な大規模 3D シーンを合成できます。私たちは、この作品がゲーム業界、仮想現実、メタバース生態学の新たな探求の方向性と可能性を提供できることを願っています。詳細についてはプロジェクトのホームページをご覧ください。

以上がワンクリックで山や川をさまざまなスタイルで生成し、2D 画像から無制限の 3D シーンを生成する方法を学びますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

DualBEV: BEVFormer および BEVDet4D を大幅に上回る、本を開いてください! DualBEV: BEVFormer および BEVDet4D を大幅に上回る、本を開いてください! Mar 21, 2024 pm 05:21 PM

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。

See all articles