さまざまな分野における顔認識テクノロジーの大きな可能性は、ほとんど想像を絶するものです。ただし、最も複雑なアプリケーションを実装する前に、その機能における特定の一般的な落とし穴といくつかの倫理的考慮事項に対処する必要があります。
正確な顔認識システムは、生体認証技術を使用して写真やビデオから顔の特徴をマッピングします。この情報を既知の顔のデータベースと比較して、一致するものを見つけます。顔認識は個人の身元を確認するのに役立ちますが、プライバシーの懸念も生じます。
数十年前、私たちは顔認識が将来私たちの生活にほぼ不可欠な部分になるとは予想できませんでした。スマートフォンのロック解除からオンラインまたはオフラインの取引の実行に至るまで、このテクノロジーは今日の私たちの日常生活に深く浸透しています。
顔認識システムは、人工知能のコンピューター ビジョンと機械学習コンポーネントを応用したものです。次のように機能します。アルゴリズムは、人の顔のさまざまな詳細 (顔と顔の間のスペースなど) を判断するようにトレーニングされます。目、ピクセル数や曲率、システム内で顔を再構築するために論理的に解釈されるその他の詳細。この再現は、システム データベースに保存されている多数の顔と比較されます。たとえば、アルゴリズムがデータベース内に存在する顔との一致を検出すると、システムはそれを「認識」し、ユーザーのタスクを実行します。
今日の顔認識システムは、プロセス全体を数秒で完了するだけでなく、照明、画像解像度、視野角が劣悪な環境でも動作することができます。他の人工知能テクノロジーと同様に、顔認識システムをさまざまな目的で使用する場合は、いくつかの倫理原則に従う必要があります。
まず、顔認識デバイスの開発では、性別、顔の特徴、個人またはグループに対する変形またはその他の偏見。顔認識システムの運用が 100% 公平である可能性が低いことを示す十分な証拠が現在あります。その結果、このテクノロジーをサポートするシステムを構築する企業は、システム内で見つかったバイアスの痕跡をすべて除去するのに何百時間も費やすことがよくあります。
マイクロソフトのような評判の高い企業は、できるだけ多くの民族コミュニティから資格のある専門家を雇用することがよくあります。顔認識システムの研究、開発、テスト、設計の段階で、多様性により、AI データ モデルをトレーニングするための大規模なデータ セットを作成することができました。大規模なデータセットは偏見を軽減しますが、多様性は象徴的なものでもあります。世界中から個人を選ぶことで、現実世界の多様性を反映することができます。
顔認識システムからバイアスを排除するには、企業は特別な努力を払う必要があります。これを達成するには、機械学習とラベル付けに使用されるデータセットが多様である必要があります。最も重要なことは、公平な顔認識システムの出力品質は、偏見の要素なしに世界中のどこでもシームレスに動作するため、非常に高くなるということです。
顔認識システムの公平性を確保するために、開発者はベータ テスト段階でエンド顧客を関与させることもできます。このようなシステムを現実のシナリオでテストできれば、その機能の品質が向上するだけです。
職場やサイバーセキュリティ システムで顔認識システムを使用している企業は、機械学習情報が保存されている場所に関する詳細をすべて把握する必要があります。このような企業は、日常業務にテクノロジーを導入する前に、テクノロジーの限界と機能を理解する必要があります。 AI テクノロジーを提供する企業は、これらの詳細について顧客に対して完全に透明性を持たせる必要があります。さらに、サービスプロバイダーは、顧客がどこでも顔認識システムを使用できることを保証する必要があります。システム内の更新は続行する前に顧客によって有効に承認される必要があります。
要約すると、顔認識システムは多くの分野で導入されています。このようなシステムを製造する企業は、特にその技術が法執行や個人または集団による監視に直接影響を与える可能性がある場合には、責任を負わなければなりません。このようなシステムにおける説明責任とは、身体的または健康に基づく危害、金銭的流用、またはシステムから発生する可能性のあるその他の問題を防止するためのユースケースを含めることを意味します。プロセスに制御要素を導入するには、資格のある個人がビジネス内のシステムを担当し、慎重かつ論理的な意思決定を行います。さらに、顔認識システムを日常業務に組み込んでいる企業は、テクノロジーに対する顧客の不満に直ちに対処する必要があります。
通常の状況では、個人またはグループの同意なしに、個人、グループ、またはその他の行動を監視するために顔認識システムを使用してはなりません。欧州連合などの一部の機関では、認可されていない企業が統治機関の管轄区域内で個人をスパイすることを防止するために、標準化された一連の法律を定めています。このようなシステムを使用する企業は、米国のデータ保護法とプライバシー法をすべて遵守する必要があります。
企業は、国家安全保障またはその他の重要な状況に関連する目的で中央政府または決定的な規制当局の許可がない限り、監視に顔認識システムを使用することはできません。グループ。基本的に、この技術を利用して被害者の人権や自由を侵害することは固く禁じられています。
これらの規制に例外なく従うようにプログラムされていますが、顔認識システムは操作ミスにより問題を引き起こす可能性があります。
前述したように、顔認識システムはデジタル決済に組み込まれています。ユーザーを容易にするアプリケーション このテクノロジーを使用してトランザクションを検証できます。このテクノロジーの存在により、顔の個人情報の盗難やデビット カードの詐欺などの犯罪行為が発生する可能性が非常に高くなります。顧客が顔認識システムを選択するのは、それがユーザーに提供する利便性の高さによるものです。顔認識システムにはセキュリティプロトコルが導入されているにもかかわらず、顔のコピーは資金の流用につながる可能性があります。
顔認識システムは、公的犯罪者を逮捕する前に特定するために使用されます。このテクノロジーは概念としては間違いなく法執行機関に役立ちますが、その動作には明らかな問題がいくつかあります。犯罪者はさまざまな方法でこのテクノロジーを悪用する可能性があります。たとえば、偏った AI の概念では、システムが有色人種を区別できない場合があるため、法執行官に不正確な結果が提供されます。通常、このようなシステムは白人男性の画像を含むデータセットでトレーニングされます。したがって、他の人種の人々を識別する場合、システムの仕組みは間違っています。
企業や公共機関が高度な顔認識システムを使用して民間人を違法にスパイしたとして告発された例がいくつかあります。個人の継続的な監視を通じて収集されたビデオ データは、さまざまな不正な目的に使用される可能性があります。顔認識システムの最大の欠点の 1 つは、顔認識システムが提供する出力が一般的すぎることです。
たとえば、ある人が重罪を犯した疑いがある場合、その人に犯罪歴があるかどうかを確認するために、その人の写真が撮影され、犯罪者の写真数枚と一緒に実行されます。ただし、このデータを積み重ねることは、顔認識データベースにその男性と経験豊富な重罪犯の写真が保持されることを意味します。つまり、本人が無実であるにもかかわらず、プライバシーが侵害されたことになります。第二に、この人は誰から見ても無実であるにもかかわらず、悪人であると認識される可能性があります。
顔認識テクノロジーに関連する主な問題やエラーは、テクノロジーの進歩の欠如、データセットの多様性の欠如、企業によるシステムの非効率な取り扱いに起因していることがわかります。私の意見では、現実世界のニーズにおける AI とその応用範囲は無限であり、顔認識テクノロジーのリスクは通常、テクノロジーが実際のニーズと異なる働きをするときに発生します。
今後のさらなるテクノロジーの発展により、テクノロジーに関連した問題は解決されるでしょう。 AI アルゴリズムのバイアスに関する問題は、最終的には解決されるでしょう。ただし、倫理規範に違反することなくテクノロジーが完璧に機能するためには、企業はそのようなシステムに対して厳格なレベルのガバナンスを維持する必要があります。ガバナンスが強化されれば、顔認識システムのバグは将来的に対処される可能性があります。したがって、前向きな解決策を達成するには、そのようなシステムの研究、開発、設計を改善する必要があります。
以上が顔認識技術の倫理原則は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。