Python人工知能アルゴリズム人工ニューラルネットワークの使い方
Artificial Neural Network
(Artificial Neural Network、ANN) は、生物学的ニューラル ネットワークの構造と機能を模倣した数学モデルであり、その目的は、学習とトレーニングを通じて未知の入力データを処理できるようにすることです。複雑な非線形マッピング関係を実行して、適応型のインテリジェントな意思決定を実現します。 ANNは人工知能アルゴリズムの中で最も基本的かつ核となるアルゴリズムであると言えます。
ANN モデルの基本構造には、入力層、隠れ層、出力層が含まれます。入力層は入力データを受け取り、隠れ層はデータのマルチレベル、高次元の変換と処理を担当し、出力層は処理されたデータを出力します。 ANN のトレーニング プロセスでは、ニューラル ネットワークが入力データを正しく予測して分類できるように、複数の反復を通じてニューラル ネットワークの各層の重みを継続的に調整します。
人工ニューラル ネットワーク アルゴリズムの例
次に、単純な人工ニューラル ネットワーク アルゴリズムの例を見てみましょう:
import numpy as np class NeuralNetwork(): def __init__(self, layers): """ layers: 数组,包含每个层的神经元数量,例如 [2, 3, 1] 表示 3 层神经网络,第一层 2 个神经元,第二层 3 个神经元,第三层 1 个神经元。 weights: 数组,包含每个连接的权重矩阵,默认值随机生成。 biases: 数组,包含每个层的偏差值,默认值为 0。 """ self.layers = layers self.weights = [np.random.randn(a, b) for a, b in zip(layers[1:], layers[:-1])] self.biases = [np.zeros((a, 1)) for a in layers[1:]] def sigmoid(self, z): """Sigmoid 激活函数.""" return 1 / (1 + np.exp(-z)) def forward_propagation(self, a): """前向传播.""" for w, b in zip(self.weights, self.biases): z = np.dot(w, a) + b a = self.sigmoid(z) return a def backward_propagation(self, x, y): """反向传播.""" nabla_w = [np.zeros(w.shape) for w in self.weights] nabla_b = [np.zeros(b.shape) for b in self.biases] a = x activations = [x] zs = [] for w, b in zip(self.weights, self.biases): z = np.dot(w, a) + b zs.append(z) a = self.sigmoid(z) activations.append(a) delta = self.cost_derivative(activations[-1], y) * self.sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) for l in range(2, len(self.layers)): z = zs[-l] sp = self.sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_w, nabla_b) def train(self, x_train, y_train, epochs, learning_rate): """训练网络.""" for epoch in range(epochs): nabla_w = [np.zeros(w.shape) for w in self.weights] nabla_b = [np.zeros(b.shape) for b in self.biases] for x, y in zip(x_train, y_train): delta_nabla_w, delta_nabla_b = self.backward_propagation(np.array([x]).transpose(), np.array([y]).transpose()) nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] self.weights = [w-(learning_rate/len(x_train))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(learning_rate/len(x_train))*nb for b, nb in zip(self.biases, nabla_b)] def predict(self, x_test): """预测.""" y_predictions = [] for x in x_test: y_predictions.append(self.forward_propagation(np.array([x]).transpose())[0][0]) return y_predictions def cost_derivative(self, output_activations, y): """损失函数的导数.""" return output_activations - y def sigmoid_prime(self, z): """Sigmoid 函数的导数.""" return self.sigmoid(z) * (1 - self.sigmoid(z))
次のコード例を使用して、この単純なニューラル ネットワーク アルゴリズムをインスタンス化して使用します。クラス:
x_train = [[0, 0], [1, 0], [0, 1], [1, 1]] y_train = [0, 1, 1, 0] # 创建神经网络 nn = NeuralNetwork([2, 3, 1]) # 训练神经网络 nn.train(x_train, y_train, 10000, 0.1) # 测试神经网络 x_test = [[0, 0], [1, 0], [0, 1], [1, 1]] y_test = [0, 1, 1, 0] y_predictions = nn.predict(x_test) print("Predictions:", y_predictions) print("Actual:", y_test)
出力結果:
予測: [0.011602156431658403, 0.9852717774725432, 0.9839448924887225, 0.020026540429992387]
実際: [0, 1, 1, 0]
以上がPython人工知能アルゴリズム人工ニューラルネットワークの使い方の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
