ホームページ テクノロジー周辺機器 AI GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

May 02, 2023 pm 11:10 PM
大型モデル wakedata ワイケデータ

最近、WakeData Weike Data (以下、「WakeData」という) は、製品機能の新たなアップグレード ラウンドを完了しました。

2022年11月の製品発表会では、ウェイクデータの「3つの決意」が伝わってきました:常にテクノロジーにしっかり投資する、コア製品の科学技術力と自己研究率を総合的に集約する、常に努力する国内の適応能力は、国内のチップ、オペレーティングシステム、データベース、ミドルウェア、国家秘密アルゴリズムなどをサポートし、同じ分野で外国メーカーの現地代替を実現し、常にエコシステムをしっかりと受け入れ、パートナーとWin-Winの状況を作り出します。

WakeData は、製品機能のアップグレードの新たなラウンドを継続しており、過去 5 年間の技術蓄積と、不動産、小売、自動車、その他の業界および垂直分野での実践に基づいて、共同でWakeMind は戦略的パートナーと共同開発した非公開製品であり、一元的な展開機能を備えた大規模なインダストリ モデルである WakeMind は、より多くの企業が自らを革新し、効率を向上させ、AIGC 時代の生産性を解放し続けるのに役立ちます。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

WakeMind モデルの 3 つの主要なプラットフォーム層

モデル層: 母艦プラットフォームは以下に基づきます。 WakeMind は、業界のカスタマイズ機能を備えたコア エンジンとして、ChatGPT などの大規模モデルに接続されています。また、Wen Xinyiyan や Tongyi Qianwen などの複数の大規模モデル機能へのアクセスもサポートしています。

プラットフォーム レイヤー: WakeMind Prompt プロジェクト、プラグイン、LangChain などの手法に基づいており、大規模なモデルとの効率的な対話機能を実現します。ゼロサンプル学習に基づいて、モデルはプロンプトとプラグインの管理を通じてコン​​テキスト情報をよりよく理解できます。業界コーパスをフィードすることで、モデルは業界の知識を迅速に学習し、業界と垂直分野について考え、推論する能力を得ることができます。

アプリケーション層: WakeMind 母艦プラットフォームは、艦載機を通じて製品アプリケーションや業界シナリオを次々と強化するための基礎的な機能を提供し、企業の内部生産性を向上させます。

たとえば、母船プラットフォームはどのように Weishu Cloud を強化しますか。 Weishu Cloud Platform を利用してデータ資産を構築および使用するプロセスでは、多くの場合、企業はビジネス ニーズの分析とデータ開発作業に参加するために多数の専門的なデータ開発エンジニアを投資する必要があり、膨大な量の退屈な開発タスクが必要になります。データ価値の実現サイクル全体につながります。 WakeMind のエンパワーメントに基づいて、テキスト インタラクションのみを通じて、Weishu Cloud は対応するデータ クエリ ステートメントを自動的に生成し、ワンクリックでクエリを実行できます。これにより、データ クエリ、分析、開発の効率が大幅に向上し、データの技術的しきい値を包括的に下げることができます。を使用して、誰もがデータを利用できるようにするという目標を達成します。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

WakeMind モデルの 3 つの主要な特徴

1) パラメーターの数が産業および垂直分野により適していますシナリオ。人間レベルのコンテンツに到達するには、AI によって生成されたコンテンツは多くの場合、「事前トレーニングと微調整」を施した大規模モデルに基づく必要があります。WakeData は、業界をリードするマルチモーダル事前トレーニング済み大規模モデル メーカーと提携し、数千億のデータを備えています。 1 億のパラメータを含む 100 の WakeMind モデルを圧縮するためのパラメータを使用し、重点的な業界および垂直分野では、P-Tuning V2 に基づいて、微調整が必​​要なパラメータを元の 1,000 分の 1 に削減でき、計算に必要な計算量を大幅に削減できます。微調整。

2) 業界固有の垂直ドメイン機能によるテキスト作成とコード生成。

3) 民営化された導入と産業のカスタマイズをサポートします。業界または垂直分野の大手企業は、大規模モデルの導入と業界固有のカスタマイズを民営化できることを望んでいます。小規模なサンプル学習と低いコンピューティング消費電力で効果的な事前トレーニングを実施する方法が、産業用カスタマイズ モデルの技術的な限界となっています。 WakeData の業界データと垂直分野データの蓄積により、大規模な業界モデルが業界のノウハウを獲得し、独自の競争上の優位性を形成できるようになります。

同時に、WakeMind は、Transformer アーキテクチャを使用して、自己指示方式で数万の指示準拠サンプル データを生成し、SFT (教師あり微調整)、RLHF およびその他のテクノロジを使用して意図を達成します。 INT8 による量子化後、推論のコストを大幅に削減し、モデルを民営化された展開に適したものにすることができます

大規模モデルと産業用の事前トレーニング済み大規模モデル

OpneAI が ChatGPT をリリースして以来、それを世界にもたらしました 大きな衝撃が起こりました。その背後にあるラージ言語モデル (LLM) と、強化学習を使用してヒューマン フィードバックに基づいて最適化された言語モデルである RLHF (Reinforcement Learning from Human Feedback) が広く注目されています。

WakeData は、初期から NLP、CV、音声などの分野で 11 の AI モデルをリリースしています。その中で、大規模な NLP 意味分析モデルが最も豊富なアプリケーション シナリオを備えています。たとえば、不動産、自動車、ブランド小売など、頻度が低く顧客単価が高い業界では、SCRM は潜在顧客と既存顧客を管理する最も効果的な方法の 1 つです。 WakeData は、業界コーパスの蓄積と特定の事前トレーニングを通じて、AI が業界を深く理解し、会話中の顧客の質問に 24 時間いつでも迅速に応答できるようにするほか、会話情報に基づいて顧客タグを自動的に抽出して、顧客のポートレートの解像度を向上させます。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

WakeData では、AI の大規模モデル機能が、基盤となる顧客データ資産の構築から、中レベルの顧客のビジネス ジャーニーとビジネス ルール、上位レベルのマルチタッチ ポイントに至るまで、あらゆるものをカバーしています。マーケティングリンク; デジタル顧客管理の垂直分野全体を「コストを削減し、効率を向上させ、強化する」能力。例えば、CDP顧客データプラットフォームの分野では、これまではオペレーターが適切な対象顧客層を選択するために煩雑なルール設計が必要でしたが、現在ではAIが簡単な言語説明と対話を通じて、該当する対象顧客層の検索を支援することで、業務コストを大幅に削減できます。プラットフォームのコスト: 使用と学習のコストが削減され、使用効率とインタラクティブなエクスペリエンスが大幅に向上します。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

MA マーケティング オートメーションの分野では、WakeData の製品は WeChat エコシステム、Douyin、Xiaohongshu、その他のタッチ ポイントに接続され、マーケティング ジャーニーの自動構築をサポートします。豊富なジャーニーテンプレートライブラリにより、「リアルタイム、1対1、パーソナライズされた」ユーザーコンタクトを実現できます。この重要な部分は、テキスト、画像、グラフィックとテキストの混合などを含む、パーソナライズされたマーケティング資料の生成です。AI の大規模モデルは、コストを削減しながら、この部分の効率と品質を大幅に向上させることができます。

ロイヤルティ会員の分野では、会員制度が異なる業界や業態にまたがる場合、会員規約や会員資産の統一が課題となりますが、WakeDataのAIラージモデルは業界での豊富な経験と実績に基づいています。コーパス トレーニング 形成されたプロンプト エンジンは、さまざまな業種のメンバーの特性とビジネス要求を説明する簡単な会話を通じて、さまざまなメンバーシップ ルールのマッピング ロジックと組み合わせソリューションを自動的に生成できます。

業界や垂直分野における大規模モデルの実践により、その価値が証明されています。

WakeMind のビジネス パスの 3 つの段階

1) 2018 ~ 2021 年、自社モデルの適用と商業化の探索期間。 WakeData の 3 つの基本製品ラインである Weishu Cloud、Weike Cloud、Kunlun Platform に基づいて、自社開発の NLP 大規模モデルは、不動産、新規小売、自動車、デジタル マーケティングなどの垂直分野で包括的に調査および実践されます。

2) 2022年から2023年、WakeMindのリリースと母艦プラットフォームの構築期間。 WakeData は、戦略的パートナーと協力して、業界大規模モデル WakeMind の研究開発を加速します。WakeMind は、マザーシップ プラットフォームを通じて、業界および垂直分野をカスタマイズする機能、導入を民営化する機能、および一般的なサービスへのアクセスと管理機能を備えています。独自のモデルではカバーできないシナリオへの有利な追加を実現する大規模モデル。

3) 2023年以降、WakeMindモデルの本格適用期間に入ります。マザーシップ プラットフォームの機能に基づいて、WakeMind は Weike Cloud、Weishu Cloud、Kunlun Platform などの製品ラインに完全に接続されており、業界知識の蓄積、業界シナリオの最適化、業界の迅速なエンジニアリング トレーニングを通じて、WakeMind は業界の能力をさらに向上させます。このモデルは、不動産、新興小売、自動車、その他の業界で大規模な商用アプリケーションを開始する予定です。同時に、WakeData 自体も、WakeMind マザーシップ プラットフォームの機能に基づいた独自の生産性革命を実現し始めています。

WakeData が AI を使用して生産性を解放する方法

WakeData の使命は「データを目覚めさせる」と定義されており、長年にわたってビッグ データ プラットフォームの分野に展開されてきました。 TOB エンタープライズ サービス会社として、WakeData は「大規模モデルの使用方法」に大きなチャンスがあると考えており、大規模モデルの使用を 2 つの側面でカバーしています。1 つは大規模モデルを製品に統合し、もう 1 つは大規模モデルを支援することです。デザイナー、プログラマーなどが社内で製品開発や顧客プロジェクトの提供に大規模なモデルを使用している企業。

大規模モデルへのアクセスとアプリケーションには、より適用可能なシナリオとビッグデータ AI 機能という 2 つの基本要素があります。WakeData の 2 つの主要製品である「Weike Cloud」と「Weishu Cloud」は、大規模モデルへのアクセスです。促進されました。 Weike Cloud は、業界のデジタル アプリケーションに基づいて大規模なモデル ツールをより便利かつシームレスに接続でき、顧客はアプリケーションの背後にある複雑な構成や技術的な最適化について心配する必要はありません。Weike Cloud は、業界のヘルプ シナリオに基づいて最適化プロンプト プロジェクトと垂直モデルを適用できます。 。これは、WakeData がプラットフォーム アプリケーションにおいて常に堅持してきた製品ソリューションの利点でもあります。

同時に、WakeData は大規模モデル アクセス製品を 2 つのカテゴリに分けています。1 つは製品と業界のビジネス フロー アクセスに基づいています。このタイプのアクセスの焦点は、顧客を支援するために経験と業界の知識を最適化することです。 2 番目のタイプは、製品アーキテクチャとオープンソースの大規模モデルに基づいて垂直シナリオを徹底的に最適化することであり、このタイプの製品は、リスク耐性とデータ セキュリティの点で大規模顧客のニーズにより一致しています。同時に、業界の理解に基づいてモデルを継続的に更新でき、最適化によって垂直産業における顧客の継続的な競争力を維持できます。

「企業は、デジタル変革とデジタル顧客管理においてビッグモデルを統合する必要があります。ビッグデータとシナリオは 2 つの重要な要素です。」と WakeData の創設者兼 CEO の Li Kechen 氏は述べています。

通常の状況では、大規模なモデルでは効果的なトレーニングを行うために大量のデータが必要となるため、産業用データ プラットフォームの機能が重要です。最近、中国サイバースペース局は「生成型人工知能サービスの管理に関する措置(コメント草案)」を発表しました。この中では、トレーニングおよびトレーニング前データソースの法的遵守、信頼性、正確性、客観性が特に重視されています。データの多様性、性別。大規模モデルの価値適用シナリオは、大規模モデルの開発と商用化における重要な要素です。いわゆるシナリオとは、トレーニングするモデルの目的と、法令順守を前提としてビジネスの中核となる価値を生み出すことができるかどうかを指します。 。

Li Kechen 氏は、シナリオとは大規模なモデルが使用される環境であり、ビッグ データと AI テクノロジの基礎は機能であると考えています。業界シナリオと業界データを持つ企業は、より速く、より効果的で、より俊敏になるでしょう。大規模モデルの機能を獲得します。

WakeData の 2 つのコア製品ラインは、これら 2 つの要素の集積であり、Weishu Cloud は新世代のデータ プラットフォームとして、強力なビッグデータ、Eed-to-End データ処理機能を備えています。 Keyun プラットフォームには、CDP、MA、SCRM、Loyalty などのスイートが含まれており、多数のビジネス アプリケーション シナリオがあり、垂直産業での深耕戦略を通じて、Keyun はより強力な業界ノウハウとより価値のある製品を保有しています。サンプルデータ。 Weishu Cloud は 2022 年にバージョン 5.0 をリリースする予定です。そのデータ統合、データ計算、データ分析とガバナンス、データ視覚化、データ資産化機能はすべて業界をリードする利点を備えています。これらのデータ側の利点は、大規模モデルの時代における工業化された人工知能アプリケーションの競争の障壁にもなりました。

「生産性の解放を促進する職場環境は、最初に WakeData 内で形成されました。WakeMind の機能は、製品設計、開発テスト、マーケティング業務などの分野で使用されてきました。最初のアプリケーションでは、人的効率の向上を達成しました。 「20%。改善。製品の研究開発を加速すると同時に、顧客のプロジェクト実施の効率も向上し、顧客のデジタル プロジェクトの実装にかかる時間とコストを節約します」と WakeData CTO の Qian Yong 氏は述べています。

Kunlun プラットフォームは、基本クラウド、開発クラウド、統合クラウドの 3 つの部分で構成されており、WakeData 製品の開発、実装、提供のプロセスにおいて非常に重要なクラウド ネイティブ テクノロジー ベースです。 Kunlun Platform Development Cloud は WakeMind によって強化されており、エンジニアはすでに「製品ドキュメントに基づいて、対応するアーキテクチャ設計とデータ モデル設計の生成を支援し、コードの生成とコードの正しさの検出を支援する」などのアプリケーションを検討しています。たとえば、ドメイン駆動設計を推進するプロセスにおいて、WakeMind は DDD の学習を支援し、エンジニアのドメイン モデリングを支援します。データ モデリングのプロセスでは、自然言語対話を通じてデータ モデルを作成、変更、自動的に補足、改善できます。 SQL文、製品開発プロセスにおいて、製品ドキュメントを入力することにより、製品用語集を抽出・生成し、詳細な説明を提供するなど。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

一般のエンジニアの場合、ルール コードの生成、単体テストの自動生成、コード レビューと最適化などの分野ですでに大幅な改善を行うことができます。 etc. 開発効率の向上。

WakeMind は、誰でも利用できるコピーライティング生成アシスタントを提供します。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

#マーケティング部門は、AI の Text to Video を通じてマーケティング成長マトリックスを迅速に構築します。

GPT 大型モデル製品と WakeData の新しい製品アップグレードの統合

AIGC の産業および垂直分野の強化は避けられない傾向であり、これは WakeData の設立以来の中核的な開発路線でもあります。 WakeData は、ChatGPT のようなテクノロジーとサービスに対して常にオープンで包括的な姿勢を維持し、それらに積極的に参加しており、工業化された運用に焦点を当てる戦略に基づいて、価値と商業化への道をしっかりと把握しています。 WakeMind の WakeMind の大規模な業界モデルは、より多くの企業が自社に革命を起こし、効率を向上させ、AIGC 時代の生産性を解放し続けるのに役立ちます。

以上がGPT 大型モデル製品と WakeData の新しい製品アップグレードの統合の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ビッグモデルアプリ Tencent Yuanbao がオンラインになりました! Hunyuan がアップグレードされ、どこにでも持ち運べるオールラウンドな AI アシスタントが作成されました ビッグモデルアプリ Tencent Yuanbao がオンラインになりました! Hunyuan がアップグレードされ、どこにでも持ち運べるオールラウンドな AI アシスタントが作成されました Jun 09, 2024 pm 10:38 PM

5月30日、TencentはHunyuanモデルの包括的なアップグレードを発表し、Hunyuanモデルに基づくアプリ「Tencent Yuanbao」が正式にリリースされ、AppleおよびAndroidアプリストアからダウンロードできるようになりました。前のテスト段階のフンユアン アプレット バージョンと比較して、Tencent Yuanbao は、日常生活シナリオ向けの AI 検索、AI サマリー、AI ライティングなどのコア機能を提供し、Yuanbao のゲームプレイもより豊富で、複数の機能を提供します。 、パーソナルエージェントの作成などの新しいゲームプレイ方法が追加されます。 Tencent Cloud 副社長で Tencent Hunyuan 大型モデルの責任者である Liu Yuhong 氏は、「テンセントは、最初に大型モデルを開発しようとはしません。」と述べました。 Tencent Hunyuan の大型モデルは、ビジネス シナリオにおける豊富で大規模なポーランド テクノロジーを活用しながら、ユーザーの真のニーズを洞察します。

Bytedance Beanbao 大型モデルがリリース、Volcano Engine フルスタック AI サービスが企業のインテリジェントな変革を支援 Bytedance Beanbao 大型モデルがリリース、Volcano Engine フルスタック AI サービスが企業のインテリジェントな変革を支援 Jun 05, 2024 pm 07:59 PM

Volcano Engine の社長である Tan Dai 氏は、大規模モデルを実装したい企業は、モデルの有効性、推論コスト、実装の難易度という 3 つの重要な課題に直面していると述べました。複雑な問題を解決するためのサポートとして、適切な基本的な大規模モデルが必要です。また、サービスは低コストの推論を備えているため、大規模なモデルを広く使用できるようになり、企業がシナリオを実装できるようにするためには、より多くのツール、プラットフォーム、アプリケーションが必要になります。 ——Huoshan Engine 01 社長、Tan Dai 氏。大きなビーンバッグ モデルがデビューし、頻繁に使用されています。モデル効果を磨き上げることは、AI の実装における最も重要な課題です。 Tan Dai 氏は、良いモデルは大量に使用することでのみ磨かれると指摘しました。現在、Doubao モデルは毎日 1,200 億トークンのテキストを処理し、3,000 万枚の画像を生成しています。企業による大規模モデルシナリオの実装を支援するために、バイトダンスが独自に開発した豆包大規模モデルが火山を通じて打ち上げられます。

Shengteng AI テクノロジーを使用した秦嶺・秦川交通モデルは、西安のスマート交通イノベーション センターの構築を支援します Shengteng AI テクノロジーを使用した秦嶺・秦川交通モデルは、西安のスマート交通イノベーション センターの構築を支援します Oct 15, 2023 am 08:17 AM

「高度な複雑性、高度な断片化、およびクロスドメイン」は、輸送業界のデジタル化およびインテリジェントなアップグレードに向かう上で常に主要な問題点でした。最近、チャイナビジョン、西安雁塔区政府、西安未来人工知能コンピューティングセンターが共同で構築したパラメータースケール1000億の「秦嶺・秦川交通モデル」は、スマート交通・交通分野を指向している。西安とその周辺地域にサービスを提供しており、この地域はスマート交通イノベーションの拠点となるでしょう。 「秦嶺・秦川交通モデル」は、オープンシナリオにおける西安の膨大な地元交通生態データ、中国科学ビジョンが自社開発したオリジナルの高度なアルゴリズム、そして西安未来人工知能コンピューティングセンターのShengteng AIの強力なコンピューティング能力を組み合わせたものです。道路網の監視を提供するため、緊急指令、メンテナンス管理、公共交通機関などのスマートな交通シナリオは、デジタルでインテリジェントな変化をもたらします。交通管理には都市ごとに異なる特徴があり、道路の交通状況も異なります。

NVIDIA の大規模モデル推論フレームワークを明らかにする: TensorRT-LLM NVIDIA の大規模モデル推論フレームワークを明らかにする: TensorRT-LLM Feb 01, 2024 pm 05:24 PM

1. TensorRT-LLM の製品位置付け TensorRT-LLM は、NVIDIA が開発した大規模言語モデル (LLM) 向けのスケーラブルな推論ソリューションです。 TensorRT 深層学習コンパイル フレームワークに基づいて計算グラフを構築、コンパイル、実行し、FastTransformer の効率的なカーネル実装を利用します。さらに、デバイス間の通信には NCCL を利用します。開発者は、カットラスに基づいてカスタマイズされた GEMM を開発するなど、技術開発や需要の違いに基づいて特定のニーズを満たすためにオペレーターをカスタマイズできます。 TensorRT-LLM は、NVIDIA の公式推論ソリューションであり、高いパフォーマンスを提供し、実用性を継続的に向上させることに尽力しています。 TensorRT-LL

GPT-4をベンチマーク!中国移動の九天大型モデルが二重登録を通過 GPT-4をベンチマーク!中国移動の九天大型モデルが二重登録を通過 Apr 04, 2024 am 09:31 AM

4月4日のニュースによると、中国サイバースペース局は最近、登録された大型モデルのリストを発表し、その中にチャイナモバイルの「九天自然言語インタラクション大型モデル」が含まれており、チャイナモバイルの九天AI大型モデルが生成人工言語を正式に提供できることを示した。外部世界への諜報機関。チャイナモバイルは、これは中央企業が開発した初めての大規模モデルであり、国家の「生成人工知能サービス登録」と「国内深層合成サービスアルゴリズム登録」の二重登録を通過したと述べた。報告によると、Juiutian の自然言語インタラクション大規模モデルは、強化された業界能力、セキュリティ、信頼性の特徴を持ち、フルスタック ローカリゼーションをサポートしており、90 億、139 億、570 億、1000 億などのさまざまなパラメータ バージョンを形成しており、クラウド、エッジ、エンドでは状況が異なりますが、柔軟に導入できます。

新しいテストベンチマークがリリース、最も強力なオープンソースのLlama 3が困惑 新しいテストベンチマークがリリース、最も強力なオープンソースのLlama 3が困惑 Apr 23, 2024 pm 12:13 PM

テストの問題が簡単すぎると、上位の生徒も下位の生徒も 90 点を獲得でき、その差は広がりません。Claude3、Llama3、さらには GPT-5 などのより強力なモデルが後にリリースされるため、業界はより困難で差別化されたモデルのベンチマークが緊急に必要です。大型モデルアリーナの背後にある組織 LMSYS は、次世代ベンチマーク Arena-Hard を発表し、広く注目を集めました。 Llama3 命令の 2 つの微調整されたバージョンの強度に関する最新のリファレンスもあります。全員が同様のスコアを持っていた以前の MTBench と比較すると、アリーナとハードの識別は 22.6% から 87.4% に増加し、一目で強くも弱くもなりました。 Arena-Hard は、アリーナからのリアルタイムの人間データを使用して構築されており、人間の好みとの一致率は 89.1% です。

産業ナレッジグラフの高度な実践 産業ナレッジグラフの高度な実践 Jun 13, 2024 am 11:59 AM

1. 背景の紹介 まず、Yunwen Technology の開発の歴史を紹介します。 Yunwen Technology Company ...2023 年は大規模モデルが普及する時期であり、多くの企業は大規模モデルの後、グラフの重要性が大幅に低下し、以前に検討されたプリセット情報システムはもはや重要ではないと考えています。しかし、RAG の推進とデータ ガバナンスの普及により、より効率的なデータ ガバナンスと高品質のデータが民営化された大規模モデルの有効性を向上させるための重要な前提条件であることがわかり、ますます多くの企業が注目し始めています。知識構築関連コンテンツへ。これにより、知識の構築と処理がより高いレベルに促進され、探索できる技術や方法が数多く存在します。新しいテクノロジーの出現によってすべての古いテクノロジーが打ち破られるわけではなく、新旧のテクノロジーが統合される可能性があることがわかります。

Xiaomi Byteが力を合わせます! Xiao Ai の Doubao へのアクセスの大規模モデル: 携帯電話と SU7 にすでにインストールされています Xiaomi Byteが力を合わせます! Xiao Ai の Doubao へのアクセスの大規模モデル: 携帯電話と SU7 にすでにインストールされています Jun 13, 2024 pm 05:11 PM

6月13日のニュースによると、Byteの「Volcano Engine」公開アカウントによると、Xiaomiの人工知能アシスタント「Xiao Ai」はVolcano Engineとの協力に達し、両社はbeanbao大型モデルに基づいて、よりインテリジェントなAIインタラクティブ体験を実現するとのこと。 。 ByteDance が作成した大規模な豆包モデルは、毎日最大 1,200 億のテキスト トークンを効率的に処理し、3,000 万個のコンテンツを生成できると報告されています。 Xiaomi は、Doubao 大型モデルを使用して、独自モデルの学習能力と推論能力を向上させ、ユーザーのニーズをより正確に把握するだけでなく、より速い応答速度とより包括的なコンテンツ サービスを提供する新しい「Xiao Ai Classmate」を作成しました。たとえば、ユーザーが複雑な科学的概念について質問する場合、&ldq

See all articles