10 行の Python コードでどんな素晴らしいことができるでしょうか?
10 行以内のコードでどのような興味深い機能を実現できるかを見てみましょう。
1. QR コードの生成
QR コードは二次元バーコードとも呼ばれ、一般的な二次元コードは QR コードです。QR の正式名称はクイック レスポンスです。近年人気のモバイルデバイス。人気のコーディング方法であり、QR コードの生成も非常に簡単です。Python では、MyQR モジュールを通じて QR コードを生成できます。QR コードを生成するには、2 行のコードのみが必要です。まず MyQR モジュールをインストールします。ここでは国内ソースのダウンロードを選択します:
pip install qrcode
インストールが完了したら、コードの記述を開始できます:
import qrcode text = input(输入文字或URL:) # 设置URL必须添加http:// img =qrcode.make(text) img.save() #保存图片至本地目录,可以设定路径 img.show()
コードを実行すると、プロジェクト A の QR コードの下にコードが生成されます。もちろん、QR コードを強化することもできます。
最初に MyQR モジュールをインストールします
pip installmyqr def gakki_code(): version, level, qr_name = myqr.run( words=https://520mg.com/it/#/main/2, # 可以是字符串,也可以是网址(前面要加http(s)://) version=1,# 设置容错率为最高 level='H', # 控制纠错水平,范围是L、M、Q、H,从左到右依次升高 picture=gakki.gif, # 将二维码和图片合成 colorized=True,# 彩色二维码 contrast=1.0, # 用以调节图片的对比度,1.0 表示原始图片,更小的值表示更低对比度,更大反之。默认为1.0 brightness=1.0, # 用来调节图片的亮度,其余用法和取值同上 save_name=gakki_code.gif, # 保存文件的名字,格式可以是jpg,png,bmp,gif save_dir=os.getcwd()# 控制位置 ) gakki_code()
さらに、MyQR は動的な画像もサポートしています。
2. ワードクラウドの生成
ワードクラウドとは、ワードクラウドとも呼ばれ、テキストデータ中に出現頻度が高くキーワードを構成する「キーワード」を視覚的に目立つように表示したものです。単語のレンダリングは雲のようなカラー画像を形成するため、テキストデータの主な意味が一目で理解できます。
しかし、古いプログラマーとして、私は今でもコードを使用して独自のワード クラウドを生成するのが好きです。それは複雑ですか? 長い時間がかかりますか? 多くのテキストでさまざまな方法が紹介されていますが、実際には 10 時間しかかかりません。行だけの Python コードです。
最初に必要なライブラリをインストールします
pip install wordcloud pip install jieba pip install matplotlib import matplotlib.pyplot as plt from wordcloud import WordCloud import jieba text_from_file_with_apath = open('/Users/hecom/23tips.txt').read() wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True) wl_space_split =.join(wordlist_after_jieba) my_wordcloud = WordCloud().generate(wl_space_split) plt.imshow(my_wordcloud) plt.axis(off) plt.show()
以上で、生成されたワード クラウドは次のようになります:
これらの 10 行のコードを読んでください:
- 1 行目から 3 行目は、jieba の描画ライブラリ matplotlib、ワード クラウド生成ライブラリ wordcloud、およびワード セグメンテーション ライブラリをそれぞれインポートします。 4 行目はローカル ファイルの読み取りです。コードで使用されているテキストは、この公開アカウントの「老操の目から見た研究開発管理に関する 2 つまたは 3 つのこと」です。 5 ~ 6 行目、jieba を使用して単語を分割し、単語分割の結果をスペースで区切ります。 7 行目、単語分割後のテキストのワード クラウドを生成します。 8 行目から 10 行目では、pyplot を使用してワード クラウド図を表示します。
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
pip install -i https://mirror.baidu.com/pypi/simple paddlehub
次に必要なコードは 5 行だけです。バッチ カットアウトを実現できます。
import os, paddlehub as hub humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')# 加载模型 path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/'# 文件目录 files = [path + i for i in os.listdir(path)]# 获取文件列表 results = humanseg.segmentation(data={'image':files})# 抠图
4. テキスト感情認識
パドルパドルの前では、自然言語処理も非常に簡単になります。テキスト感情認識を実現するには、PaddlePaddle と Paddlehub もインストールする必要があります。具体的なインストールについては、パート 3 を参照してください。次にコード部分が続きます:
import paddlehub as hub senta = hub.Module(name='senta_lstm')# 加载模型 sentence = [# 准备要识别的语句 '你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏', ] results = senta.sentiment_classify(data={text:sentence})# 情绪识别 # 输出识别结果 for result in results: print(result)
認識結果は辞書リストです:
{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398} {'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967} {'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676} {'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064} {'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067} {'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}
センチメントキー フィールドにはセンチメント情報が含まれています。詳細な分析については、「Python 自然言語処理に必要なコードは 5 行のみ」を参照してください。
5. マスクを着用しているかどうかを確認するこれも PaddlePaddle を使用した製品です。上記の手順に従って PaddlePaddle と Paddlehub をインストールし、コードの記述を開始しました。##パドルハブをハブとしてインポート# モデルをロード module = Hub.Module(name='pyramidbox_lite_mobile_mask')# 画像リスト image_list = ['face.jpg']# 画像辞書を取得 input_dict = {'image':image_list} # Maskの有無を確認 module.face_detection(data=input_dict)
上記手順を実行すると、プロジェクト直下にdetection_resultフォルダが生成され、その中に認識結果が格納されます。
6. 単純な情報爆撃
Python で入力デバイスを制御する方法は数多くあり、win32 または pynput モジュールを使用できます。単純なループ操作を通じて情報爆撃の効果を実現できます。ここでは、pynput を例として、最初にモジュールをインストールする必要があります:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ pynput
from pynput import mouse
# 创建一个鼠标
m_mouse = mouse.Controller()
# 输出鼠标位置
print(m_mouse.position)
もっと効率的な方法があるかもしれませんが、私はやりません。 取得後は、メッセージ ウィンドウを移動せずに座標を記録できます。次に、次のコードを実行し、ウィンドウをメッセージ ページに切り替えます。
import time from pynput import mouse, keyboard time.sleep(5) m_mouse = mouse.Controller()# 创建一个鼠标 m_keyboard = keyboard.Controller()# 创建一个键盘 m_mouse.position = (850, 670) # 将鼠标移动到指定位置 m_mouse.click(mouse.Button.left) # 点击鼠标左键 while(True): m_keyboard.type('你好')# 打字 m_keyboard.press(keyboard.Key.enter)# 按下enter m_keyboard.release(keyboard.Key.enter)# 松开enter time.sleep(0.5)# 等待 0.5秒
7. 画像内のテキストを識別する
Tesseract を使用して画像内のテキストを識別できます。Python での実装は非常に簡単ですが、ファイルをダウンロードして環境変数を設定する必要があります。少し面倒なので、この記事ではコード
import pytesseract from PIL import Image img = Image.open('text.jpg') text = pytesseract.image_to_string(img) print(text)
从一些小例子入门感觉效率很高。 猜数小案例当着练练手 以上が10 行の Python コードでどんな素晴らしいことができるでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。八、简单的小游戏
import random
print(1-100数字猜谜游戏!)
num = random.randint(1,100)
guess =guess
i = 0
while guess != num:
i += 1
guess = int(input(请输入你猜的数字:))
if guess == num:
print(恭喜,你猜对了!)
elif guess < num:
print(你猜的数小了...)
else:
print(你猜的数大了...)
print(你总共猜了%d %i + 次)

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

VSコードは、Microsoftが開発した無料のオープンソースクロスプラットフォームコードエディターと開発環境であるフルネームVisual Studioコードです。幅広いプログラミング言語をサポートし、構文の強調表示、コード自動完了、コードスニペット、および開発効率を向上させるスマートプロンプトを提供します。リッチな拡張エコシステムを通じて、ユーザーは、デバッガー、コードフォーマットツール、GIT統合など、特定のニーズや言語に拡張機能を追加できます。 VSコードには、コードのバグをすばやく見つけて解決するのに役立つ直感的なデバッガーも含まれています。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
