ホームページ テクノロジー周辺機器 AI NUS と Byte は業界を超えて協力し、モデルの最適化を通じて 72 倍高速なトレーニングを実現し、AAAI2023 の優秀論文を受賞しました。

NUS と Byte は業界を超えて協力し、モデルの最適化を通じて 72 倍高速なトレーニングを実現し、AAAI2023 の優秀論文を受賞しました。

May 06, 2023 pm 10:46 PM
機械学習 バイトダンス cowclip

最近、人工知能のトップ国際会議 AAAI 2023 が選考結果を発表しました。シンガポール国立大学 (NUS) と ByteDance 機械学習チーム (AML) が共同で作成した CowClip 技術論文が優秀論文の最終候補に選ばれました。 CowClip は、モデルの精度を確保しながら、単一の GPU でモデル トレーニングの速度を 72 倍向上させることができるモデル トレーニングの最適化戦略であり、関連するコードは現在オープンソースです。

NUS と Byte は業界を超えて協力し、モデルの最適化を通じて 72 倍高速なトレーニングを実現し、AAAI2023 の優秀論文を受賞しました。


論文アドレス: https://arxiv.org/abs/ 2204.06240

オープンソース アドレス: https://github.com/bytedance/LargeBatchCTR

AAAI は、国際人工知能推進協会が主催する年次会議で、人工知能の分野で最も古いトップ学術会議の 1 つです。 AAAI 2023 には合計 8,777 件の論文投稿があり、そのうち 1,721 件の論文が採択され、採択率は 19.6% でした。オックスフォード大学コンピュータサイエンス学部が会議の最高賞(優秀論文賞)を受賞し、北京大学などとの共同論文が優秀学生論文賞を受賞した。さらに、カンファレンスでは、モデルトレーニング戦略の最適化、グラフニューラルネットワークの最適化、ニューラルアーキテクチャの探索などの複数の方向をカバーする12の優秀論文も選出されました。

#モデルのトレーニング速度を向上させる方法は、機械学習の分野における永遠のテーマです。 2018 年に Google が最初の事前トレーニング済み大規模モデル BERT を提案して以来、大規模モデルのトレーニングは徐々に深層学習の分野でのトレンドと傾向になりました。ただし、モデルのサイズが大きくなるということは、完全なトレーニングに多くの時間と計算コストがかかることも意味します。 Google が以前に公開した情報によると、110 億パラメータの T5 (2019 年に Google が発表した事前トレーニング済みモデル) バリアントをトレーニングする場合、単一のランニングコストは 130 万米ドルを超えます。

優秀論文に選ばれたCowClipモデルトレーニング最適化戦略は、より大きなバッチサイズ(バッチサイズ)のモデル精度を確保することで、より十分なGPUパフォーマンスを実現できます。訓練速度を上げるという目的を達成するために発掘します。実験によると、CowClip を使用してトレーニングされたモデルは他の方法よりも精度が高いだけでなく、トレーニング速度も大幅に向上しました。単一の GPU で Deep FM モデルをトレーニングすると、次のデータに基づいてトレーニング時間を 12 時間から 10 分に短縮できます。公開データセットを使用すると、モデルのトレーニング速度が一度に 72 倍に向上します。

効率的なコンピューティングと、より正確な分析および意思決定機能を備えた人工知能テクノロジーは、医療、金融、製造、教育などでますます使用されています。電子商取引やその他の分野、モデルトレーニングの精度と効率は、引き続き人工知能産業の発展に影響を与える重要な要素となるでしょう。

レポートによると、Bytedance Machine Learning Team (AML) は、同社の一部のビジネスに CowClip のコア テクノロジーを導入しました。このチームは、Toutiao、Douyin、Xigua Video などの製品の推奨、広告、検索などのビジネス シナリオ向けの大規模なトレーニング システムや推論システムなど、機械学習のミドルエンド サービスを会社に提供しており、シンプルで簡単なサービスを提供しています。 -Volcano Engine を通じた企業顧客への使いやすいサービス、使いやすく、安定性と信頼性の高い機械学習プラットフォーム。


以上がNUS と Byte は業界を超えて協力し、モデルの最適化を通じて 72 倍高速なトレーニングを実現し、AAAI2023 の優秀論文を受賞しました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

Xiaomi Byteが力を合わせます! Xiao Ai の Doubao へのアクセスの大規模モデル: 携帯電話と SU7 にすでにインストールされています Xiaomi Byteが力を合わせます! Xiao Ai の Doubao へのアクセスの大規模モデル: 携帯電話と SU7 にすでにインストールされています Jun 13, 2024 pm 05:11 PM

6月13日のニュースによると、Byteの「Volcano Engine」公開アカウントによると、Xiaomiの人工知能アシスタント「Xiao Ai」はVolcano Engineとの協力に達し、両社はbeanbao大型モデルに基づいて、よりインテリジェントなAIインタラクティブ体験を実現するとのこと。 。 ByteDance が作成した大規模な豆包モデルは、毎日最大 1,200 億のテキスト トークンを効率的に処理し、3,000 万個のコンテンツを生成できると報告されています。 Xiaomi は、Doubao 大型モデルを使用して、独自モデルの学習能力と推論能力を向上させ、ユーザーのニーズをより正確に把握するだけでなく、より速い応答速度とより包括的なコンテンツ サービスを提供する新しい「Xiao Ai Classmate」を作成しました。たとえば、ユーザーが複雑な科学的概念について質問する場合、&ldq

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

See all articles