


Python の pandas ライブラリを使用してマルチレベル インデックス (MultiIndex) を作成するにはどうすればよいですか?
はじめに
pd.MultiIndex、複数のレベルを持つインデックス。マルチレベルのインデックスを通じて、インデックス グループ全体のデータを操作できます。この記事では主に、Pandas でマルチレベル インデックスを作成する 6 つの方法を紹介します。
pd.MultiIndex.from_arrays(): 多次元配列はパラメータとして使用され、高次元は高レベルを指定します。インデックス、および低次元は低レベルのインデックスを指定します。
pd.MultiIndex.from_tuples(): 引数としてのタプルのリスト。各タプルは各インデックス (高次元および低次元のインデックス) を指定します。
pd.MultiIndex.from_product(): 複数の反復可能なオブジェクト要素インデックスのデカルト積 (要素のペアの組み合わせ) に基づいて作成される、パラメーターとしての反復可能なオブジェクトのリスト。
pd.MultiIndex.from_frame: 既存のデータ フレームに基づいて直接生成
-
groupby(): データ グループ化統計を通じて取得
pivot_table(): ピボット テーブルを生成して、
pd.MultiIndex.from_arrays()
In [1] :
import pandas as pd import numpy as np
は配列を通じて生成され、通常はリスト内の要素を指定します。
In [2]:
# 列表元素是字符串和数字 array1 = [["xiaoming","guanyu","zhangfei"], [22,25,27] ] m1 = pd.MultiIndex.from_arrays(array1) m1
Out[2]:
MultiIndex([('xiaoming', 22), ( 'guanyu', 25), ('zhangfei', 27)], )
[3]:
type(m1) # 查看数据类型
で type 関数を使用してデータ型をチェックし、それが実際であることを確認します。 MultiIndex
Out[3]:
pandas.core.indexes.multi.MultiIndex
が作成されます。同時に、各レベルの名前を指定できます。
In [4]:
# 列表元素全是字符串 array2 = [["xiaoming","guanyu","zhangfei"], ["male","male","female"] ] m2 = pd.MultiIndex.from_arrays( array2, # 指定姓名和性别 names=["name","sex"]) m2
Out[4]:
MultiIndex([('xiaoming', 'male'), ( 'guanyu', 'male'), ('zhangfei', 'female')], names=['name', 'sex'])
次の例では、次のインデックスを生成します。 3 つのレベルと名前の指定:
In [5]:
array3 = [["xiaoming","guanyu","zhangfei"], ["male","male","female"], [22,25,27] ] m3 = pd.MultiIndex.from_arrays( array3, names=["姓名","性别","年龄"]) m3
Out[5]:
MultiIndex([('xiaoming', 'male', 22), ( 'guanyu', 'male', 25), ('zhangfei', 'female', 27)], names=['姓名', '性别', '年龄'])
pd.MultiIndex.from_tuples()
Throughタプル マルチレベル インデックスを次の形式で生成するには:
In [6]:
# 元组的形式 array4 = (("xiaoming","guanyu","zhangfei"), (22,25,27) ) m4 = pd.MultiIndex.from_arrays(array4) m4
Out[6]:
MultiIndex([('xiaoming', 22), ( 'guanyu', 25), ('zhangfei', 27)], )
In [7]:
# 元组构成的3层索引 array5 = (("xiaoming","guanyu","zhangfei"), ("male","male","female"), (22,25,27)) m5 = pd.MultiIndex.from_arrays(array5) m5
Out [7]:
MultiIndex([('xiaoming', 'male', 22), ( 'guanyu', 'male', 25), ('zhangfei', 'female', 27)], )
リストとタプルは混在できます。
最外層はリストです
すべてはタプルです
In [8]:
array6 = [("xiaoming","guanyu","zhangfei"), ("male","male","female"), (18,35,27) ] # 指定名字 m6 = pd.MultiIndex.from_arrays(array6,names=["姓名","性别","年龄"]) m6
Out[8]:
MultiIndex([('xiaoming', 'male', 18), ( 'guanyu', 'male', 35), ('zhangfei', 'female', 27)], names=['姓名', '性别', '年龄'] # 指定名字 )
pd.MultiIndex.from_product()
反復可能なオブジェクトのリストをパラメーターとして使用して、複数の反復可能なオブジェクト要素 (要素のペアの組み合わせ) のデカルト積に基づいてインデックスを作成します。
Python では、isinstance()
関数を使用して、Python オブジェクトが反復可能かどうかを判断します。
# 导入 collections 模块的 Iterable 对比对象 from collections import Iterable
上記の例を通じて、次のことを要約します。共通の文字列、リスト、セット、タプル、および辞書はすべて反復可能なオブジェクトです。
次の例は、説明のために示しています。 18 ]:
names = ["xiaoming","guanyu","zhangfei"] numbers = [22,25] m7 = pd.MultiIndex.from_product( [names, numbers], names=["name","number"]) # 指定名字 m7
アウト[18]:
MultiIndex([('xiaoming', 22), ('xiaoming', 25), ( 'guanyu', 22), ( 'guanyu', 25), ('zhangfei', 22), ('zhangfei', 25)], names=['name', 'number'])
イン[19]:
# 需要展开成列表形式 strings = list("abc") lists = [1,2] m8 = pd.MultiIndex.from_product( [strings, lists], names=["alpha","number"]) m8
アウト[19]:
MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['alpha', 'number'])
イン[20] :
# 使用元组形式 strings = ("a","b","c") lists = [1,2] m9 = pd.MultiIndex.from_product( [strings, lists], names=["alpha","number"]) m9
アウト[20]:
MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['alpha', 'number'])
イン[21]:
# 使用range函数 strings = ("a","b","c") # 3个元素 lists = range(3) # 0,1,2 3个元素 m10 = pd.MultiIndex.from_product( [strings, lists], names=["alpha","number"]) m10
アウト[21]:
MultiIndex([('a', 0), ('a', 1), ('a', 2), ('b', 0), ('b', 1), ('b', 2), ('c', 0), ('c', 1), ('c', 2)], names=['alpha', 'number'])
イン[22]:
# 使用range函数 strings = ("a","b","c") list1 = range(3) # 0,1,2 list2 = ["x","y"] m11 = pd.MultiIndex.from_product( [strings, list1, list2], names=["name","l1","l2"] ) m11 # 总个数 3*3*2=18
合計数は「332=18」です:
Out[22]:
MultiIndex([('a', 0, 'x'), ('a', 0, 'y'), ('a', 1, 'x'), ('a', 1, 'y'), ('a', 2, 'x'), ('a', 2, 'y'), ('b', 0, 'x'), ('b', 0, 'y'), ('b', 1, 'x'), ('b', 1, 'y'), ('b', 2, 'x'), ('b', 2, 'y'), ('c', 0, 'x'), ('c', 0, 'y'), ('c', 1, 'x'), ('c', 1, 'y'), ('c', 2, 'x'), ('c', 2, 'y')], names=['name', 'l1', 'l2'])
pd.MultiIndex.from_frame()
By current一部のデータフレームはマルチレベル インデックスを直接生成します:
df = pd.DataFrame({"name":["xiaoming","guanyu","zhaoyun"], "age":[23,39,34], "sex":["male","male","female"]}) df
マルチレベル インデックスは直接生成され、名前は既存のデータ フレームの列フィールドです:
In [24]:
pd.MultiIndex.from_frame(df)
Out[24]:
MultiIndex([('xiaoming', 23, 'male'), ( 'guanyu', 39, 'male'), ( 'zhaoyun', 34, 'female')], names=['name', 'age', 'sex'])
names パラメータで名前を指定します:
In [25]:
# 可以自定义名字 pd.MultiIndex.from_frame(df,names=["col1","col2","col3"])
Out[ 25]:
MultiIndex([('xiaoming', 23, 'male'), ( 'guanyu', 39, 'male'), ( 'zhaoyun', 34, 'female')], names=['col1', 'col2', 'col3'])
groupby()
は、groupby 関数のグループ化関数によって計算されます:
In [26]:
df1 = pd.DataFrame({"col1":list("ababbc"), "col2":list("xxyyzz"), "number1":range(90,96), "number2":range(100,106)}) df1
Out[26] :
df2 = df1.groupby(["col1","col2"]).agg({"number1":sum, "number2":np.mean}) df2

データのインデックスを表示します:
In [28] :
df2.index
Out [28]:
MultiIndex([('a', 'x'), ('a', 'y'), ('b', 'x'), ('b', 'y'), ('b', 'z'), ('c', 'z')], names=['col1', 'col2'])
pivot_table()
データ ピボット関数によって取得:
In [29]:
df3 = df1.pivot_table(values=["col1","col2"],index=["col1","col2"]) df3
イン [30]:
df3.index
アウト[30]:
MultiIndex([('a', 'x'), ('a', 'y'), ('b', 'x'), ('b', 'y'), ('b', 'z'), ('c', 'z')], names=['col1', 'col2'])
以上がPython の pandas ライブラリを使用してマルチレベル インデックス (MultiIndex) を作成するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。
