モノのインターネット アプリケーションにおける人工知能の価値ある役割
デジタル化が進む世界では、顧客エクスペリエンスと全体的なパフォーマンスを向上させるために人工知能が使用されています。
あなたのビジネスが IoT テクノロジーの分野にある場合、人工知能の重要性とメリットを理解することが重要です。この記事では、人工知能を明確に理解するために、人工知能に関連するあらゆる側面について説明します。
今日、IoT の応用分野には、視覚認識、将来のイベントの予測、オブジェクトの識別などが含まれます。
「IoT アプリケーションは何が違うの?」と考えている人もいるかもしれません。IoT アプリケーションはホーム オートメーション、ヘルスケア、製造など、さまざまな目的で使用されています。スマートシティでも活用できます。
人工知能アルゴリズムにより、システムは独立して評価、学習、動作することができます。
人工知能アルゴリズムにより、システムは独立して評価、学習、動作することができます。仮想の頭脳や思考を作成するためにも使用できます。
このテクノロジーは、経験から学習し、新しいことを自らに教える生来の能力を備えているように設計されています。これは、デバイスやシステムに特定のスキルを学習させたい場合は、自分自身または他の人 (従業員など) に何らかのデータを入力する必要があることを意味します。
機械学習は人工知能の別の分野です
機械学習は人工知能の別の分野です。これにより、プログラムは膨大なデータセットを分析し、必要に応じて独自の決定を下すことができます。機械学習は、画像分類、音声認識、推奨エンジンなど、さまざまな目的に使用できます。
機械学習は、人間の介入が必要なプロセスを自動化するために、データを使用してパターンを学習します。たとえば、自動運転車 (AV) が交通標識や夜間の道路状況を認識し、設計者や道路事情に詳しい他の人からの入力のみに依存するのではなく、周囲の環境に基づいて特定の道路をどのくらいの速度で運転するかを知るために使用できます。道路の指示。
ディープ ラーニングは機械学習の最良の例です。
ディープ ラーニングは、人工ニューラル ネットワークを使用してパターン認識および分類タスクを実行する機械学習の一種です。それぞれが複数のニューロンを持つ多層ニューラル ネットワークに依存し、過去の経験から学習します。
人間の脳は、さまざまな方法で情報を認識し、処理できるため、深層学習システムの一例です。この能力により、私たちは言語を理解し、顔を認識し、本を読み、以前の状況から得た経験や知識に基づいて意思決定を行うことができます。
人工知能には大量のデータが必要です
人工知能技術には大量のデータが必要であり、製造業者は IoT デバイスによって収集されたデータを利用できます。 AI モデルのトレーニングに使用されるデータが増えるほど、AI モデルのパフォーマンスが向上します。たとえば、家の温度を監視し、通常のパラメータから外れた変化 (2 度の低下など) を検出したときにアラートを送信する IoT デバイスがある場合、その情報やその他の情報を活用できる可能性があります。気象パターンや過去のパターンなどの要因を利用して予測モデルをトレーニングし、別の寒波が間もなく発生するかどうかをデバイスが予測できるようにします。
このタイプの分析は、暖房システムやエアコンなどの機器のメンテナンスに関連するコストを削減するのに役立ちます。これらのシステムは、設置場所に基づいて高温/低温向けに特別に設計されているためです。ただし、寿命期間中に定期的なメンテナンスを行わない場合は、それらを監視していると、暖房/冷房サイクル間のサイクル (特に冬場) によって引き起こされる磨耗により、時間の経過とともに効率が低下する可能性があります。
モノのインターネットと人工知能を使用すると、話したりタイプしたりすることなく、自宅や職場のマシンに指示を与えることができます。
上記の例からわかるように、人工知能とモノのインターネットは、連携して動作する単なる 2 つのテクノロジーではありません。実際、これらはいくつかの領域で相互に補完し合うため、人々は話したりタイプしたりすることなく、自宅や職場のマシンに指示を与えることができます。
これに加えて、他の利点もあります:
IoT アプリケーションで AI を使用すると、環境から学習してそれに応じて適応できるシステムを作成できるため、従来のアプリケーションの効率が向上します。事前に定義されたルール (例: 「これらの条件が満たされたら、これを実行する」) に焦点を当てたアプローチです。たとえば、自動運転車は、人間のドライバーよりも交通パターンを認識できる可能性があります。天気予報を含む道路状況が利用できるため、今日後半に大雨が予想される場合、車は日没までの残り時間を把握できるだけでなく、暗くなってから駐車場を探して街中を走行するときにも把握できます。光は十分ですか?
人工知能は、インテリジェント エージェントの設計と開発を研究するコンピューター サイエンスの一分野です。インテリジェント エージェントは、環境を感知し、実装を最大化するためのアクションを実行できるソフトウェアです。特定の目的のために、工学、哲学、法律、生物学、経済学で 50 年以上使用されてきました。
最初の人工知能 (AI) システムは、1956 年にジョン マッカーシーによって作成され、彼が開発しました。 「チェッカーズ ゲーム」と呼ばれる機械学習テストでは、論理ルールのみを使用して公平な方法で相手に勝つことができるまで自分自身と対戦します。これは、電話回線で接続された 2 台のコンピュータで行われます。後のシステムでは特殊なハードウェアが使用されましたが、
究極的には? デジタル化が進む世界では、顧客エクスペリエンスと全体的なパフォーマンスを向上させるために人工知能が使用されています。
ビジネスが IoT テクノロジーの分野に携わっている場合、人工知能の重要性と利点を理解することが重要です。この記事では、人工知能を明確に理解するために、人工知能に関連するあらゆる側面について説明します。
今日、IoT の応用分野には、視覚認識、将来のイベントの予測、オブジェクトの識別などが含まれます。
「IoT アプリケーションは何が違うの?」と考えている人もいるかもしれません。IoT アプリケーションはホーム オートメーション、ヘルスケア、製造など、さまざまな目的で使用されています。スマートシティでも活用できます。
人工知能アルゴリズムにより、システムは独立して評価、学習、動作することができます。
人工知能アルゴリズムにより、システムは独立して評価、学習、動作することができます。仮想の頭脳や思考を作成するためにも使用できます。
このテクノロジーは、経験から学習し、新しいことを自らに教える生来の能力を備えているように設計されています。これは、デバイスやシステムに特定のスキルを学習させたい場合は、自分自身または他の人 (従業員など) に何らかのデータを入力する必要があることを意味します。
機械学習は人工知能の別の分野です
機械学習は人工知能の別の分野です。これにより、プログラムは膨大なデータセットを分析し、必要に応じて独自の決定を下すことができます。機械学習は、画像分類、音声認識、推奨エンジンなど、さまざまな目的に使用できます。
機械学習は、人間の介入が必要なプロセスを自動化するために、データを使用してパターンを学習します。たとえば、自動運転車 (AV) が交通標識や夜間の道路状況を認識し、設計者や道路事情に詳しい他の人からの入力のみに依存するのではなく、周囲の環境に基づいて特定の道路をどのくらいの速度で運転するかを知るために使用できます。道路の指示。
ディープ ラーニングは機械学習の最良の例です。
ディープ ラーニングは、人工ニューラル ネットワークを使用してパターン認識および分類タスクを実行する機械学習の一種です。それぞれが複数のニューロンを持つ多層ニューラル ネットワークに依存し、過去の経験から学習します。
人間の脳は、さまざまな方法で情報を認識し、処理できるため、深層学習システムの一例です。この能力により、私たちは言語を理解し、顔を認識し、本を読み、以前の状況から得た経験や知識に基づいて意思決定を行うことができます。
人工知能には大量のデータが必要です
人工知能技術には大量のデータが必要であり、製造業者は IoT デバイスによって収集されたデータを利用できます。 AI モデルのトレーニングに使用されるデータが増えるほど、AI モデルのパフォーマンスが向上します。たとえば、家の温度を監視し、通常のパラメータから外れた変化 (2 度の低下など) を検出したときにアラートを送信する IoT デバイスがある場合、その情報やその他の情報を活用できる可能性があります。気象パターンや過去のパターンなどの要因を利用して予測モデルをトレーニングし、別の寒波が間もなく発生するかどうかをデバイスが予測できるようにします。
このタイプの分析は、暖房システムやエアコンなどの機器のメンテナンスに関連するコストを削減するのに役立ちます。これらのシステムは、設置場所に基づいて高温/低温向けに特別に設計されているためです。ただし、寿命期間中に定期的なメンテナンスを行わない場合は、それらを監視していると、暖房/冷房サイクル間のサイクル (特に冬場) によって引き起こされる磨耗により、時間の経過とともに効率が低下する可能性があります。
モノのインターネットと人工知能を使用すると、話したりタイプしたりすることなく、自宅や職場のマシンに指示を与えることができます。
上記の例からわかるように、人工知能とモノのインターネットは、連携して動作する単なる 2 つのテクノロジーではありません。実際、これらはいくつかの領域で相互に補完し合うため、人々は話したりタイプしたりすることなく、自宅や職場のマシンに指示を与えることができます。
これに加えて、他の利点もあります:
IoT アプリケーションで AI を使用すると、環境から学習してそれに応じて適応できるシステムを作成できるため、従来のアプリケーションの効率が向上します。事前に定義されたルール (例: 「これらの条件が満たされたら、これを実行する」) に焦点を当てたアプローチです。たとえば、自動運転車は、人間のドライバーよりも交通パターンを認識できる可能性があります。天気予報を含む道路状況が利用できるため、今日後半に大雨が予想される場合、車は日没までの残り時間を把握できるだけでなく、暗くなってから駐車場を探して街中を走行するときにも把握できます。光は十分ですか?
人工知能は、インテリジェント エージェントの設計と開発を研究するコンピューター サイエンスの一分野です。インテリジェント エージェントは、環境を感知し、実装を最大化するためのアクションを実行できるソフトウェアです。特定の目的のために、工学、哲学、法律、生物学、経済学で 50 年以上使用されてきました。
最初の人工知能 (AI) システムは、1956 年にジョン マッカーシーによって作成され、彼が開発しました。 「チェッカーズ ゲーム」と呼ばれる機械学習テストでは、論理ルールのみを使用して公平な方法で相手に勝つことができるまで自分自身と対戦します。これは、電話回線で接続された 2 台のコンピュータで行われます。後のシステムでは特殊なハードウェアが使用されましたが、元の設計の速度によって依然として制限されていました (一度に 1 つのゲーム状態しか処理できませんでした)
結局のところ、人工知能は、インターネットの構築において重要な役割を果たす最も有望なテクノロジーの 1 つです。人工知能を使用すると、データの収集、分析、意思決定に関連する問題を解決できますか?
以上がモノのインターネット アプリケーションにおける人工知能の価値ある役割の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究
