ホームページ テクノロジー周辺機器 AI 量子機械学習を実用的なアプリケーションに導入する準備はできていますか?

量子機械学習を実用的なアプリケーションに導入する準備はできていますか?

May 10, 2023 am 10:13 AM
機械学習 量子機械学習

銀行機関は多くの場合、顧客が銀行カードを使用する際の取引行動を理解し、追跡しています。たとえば、スウェーデンに休暇に行く場合、現金を持ち歩く代わりにクレジット カードで支払うことができます。ただし、他人がそれを使用すると、クレジット カードを発行した銀行は取引をブロックする決定をすることができません。結局のところ、カードのスワイプ記録には、他人がカードを不正利用したという証拠はありません。

銀行の機械学習アルゴリズムは、毎日何十億ものこうした決定を行っています。これはコンピューターサイエンスでは「平均分類問題」として知られており、これらのモデルは取引が顧客の通常の購買行動と一致するかどうかを判断する必要があります。従来の機械学習アルゴリズムの場合、この問題は主に、消費者の支払い履歴や銀行とのその他のやり取り情報をプロファイリングすることによって解決されますが、これは計算量が多く不完全なプロセスです。

テクノロジーの最前線にある量子機械学習アルゴリズムは、そのような実用的なアプリケーションに対応する準備ができていますか?この質問に対する答えについては、業界の専門家の意見が分かれています。

量子機械学習を実用的なアプリケーションに導入する準備はできていますか?

#量子機械学習はいつ登場しますか?

IBM の著名なエンジニアであり、王立工学アカデミーの会員でもあるリチャード・ホプキンス氏は、別の選択肢として量子機械学習アルゴリズムを使用する可能性があると説明しました。

同氏は、従来の機械学習モデルでは、トランザクションのさまざまな特性をすべて識別して比較検討し、トランザクションが疑わしいかどうかを判断するためのトレーニングに多くの時間とリソースが必要であると指摘しました。対照的に、量子機械学習モデルは量子ビットの重ね合わせを使用してこれらの特徴を同時に観察するため、非常に難しい分類問題に対する答えをより速く見つけることができます。

ホプキンスの見解では、量子機械学習の分野はまだ実験段階にあるものの、量子機械学習アルゴリズムが不正行為検出、医薬品の研究開発などのさまざまな分野で使用されるようになるには5年しかかからない可能性があります。 、コンピュータビジョンなどのアプリケーション。

しかし、すべての専門家がこの見解に同意しているわけではありません。量子スタートアップ企業 Xanadu の研究者であり、著書『量子コンピュータのための機械学習』の共著者であるマリア・シュルド博士は、長期的には量子機械学習には間違いなく大きな発展の可能性があるが、量子の実用化はまだ実現していないと信じています。コンピュータの計算は今のところ遠いようです。

彼女はこう言いました。「私たちは科学者で、研究している科学のビジネスケースを作ることが多いです。私たちがこれを行うのは、それがうまくいくとわかっているからではなく、何らかの刺激的な結果が得られることを願っているからです。」

量子機械学習はまだ実験段階です

量子機械学習は比較的新しい分野です。このテーマに関する研究論文は 1990 年代半ばから発表されてきましたが、量子機械学習が実際に科学界の注目を集め始めたのはここ 5 ~ 6 年のことです。

シュルド氏は、量子機械学習には 2 つの大きな研究分野があると紹介しました。1 つは、量子コンピューターを使用して、ギブス サンプラーなどの従来の機械学習アルゴリズムを高速化することです。もう 1 つは、量子コンピューターをモデルとして使用すること、特に量子アルゴリズムを使用することです。チップ自体をベースとして、従来のニューラル ネットワークと同様の方法でモデルをトレーニングします。

それでも、この分野全体としてはまだ非常に実験的な段階にあります。同氏は、機械学習アルゴリズムは場合によっては従来のアルゴリズムに比べて「量子的な利点」があることが証明される可能性があるものの、現実世界への応用が想定されるまでにはしばらく時間がかかるだろうと説明した。

これは、量子の利点が単一の狭いユースケースで達成されるという前提で発表されることが多い、複数の研究における量子機械学習への熱意によって影が薄くなっています。 「これは学術的な観点からは興味深いが、量子コンピューティングの応用可能性についてはあまり述べていない。結局のところ、これらの研究で取り上げられた問題の多くは、量子コンピュータで動作するように慎重にコード化されているのだ。」とシュルド氏は述べた。言い換えれば、彼らは、量子コンピューターを使用して、非常に特殊な方法で、非常に特殊な問題を解決することしか得意ではありません。」

これは、従来の機械学習技術の問題ではなく、その多くには次のような利点があります。より多くの問題に一般化されます。対照的に、量子機械学習の研究者は、手法をさまざまなタスクに適応させるのに依然として苦労しています。このため、シュルド氏は、量子チップを新しい機械学習モデルの基礎として使用する時期ではないと明確に指摘しました。

量子機械学習は実際にそれを証明する必要があります

量子コンピューティングの研究者は、特定の状況では量子機械学習が従来の機械学習よりもはるかに優れたパフォーマンスを発揮できることに同意していますが、前者の実用化がどれくらい早く現れるかについては、専門家の意見が分かれている。

ホプキンス氏は、問題をアルゴリズムにマッピングして解決策を生成するための共通のテンプレートがこの分野にはまだ不足していることを認めています。これは従来の機械学習がかつて直面した問題でもありますが、それが完成すれば、このテクノロジーの活用は非常に簡単になります。 。

「量子コンピューターを使用すると、ユーザーは高次元のデータセットに基づいて、より適切で正確な意思決定を行うことができます。私たちはこれを理論的に証明し、実験室でも証明しており、ますますそれに近づいています」私たちはそれを現実に証明することになるのです」と彼は言った。

しかし、量子機械学習モデルはこれに対応する準備ができているのでしょうか?シュルド氏はそうではないと考えている。彼女は、「基盤となるハードウェアが改良されるまで、多くの実際的な問題を解決できる量子機械学習アルゴリズムが存在するかどうかはわかりません。エラーのない機械がなければ、実際に解決できる量子機械学習アルゴリズムには限界があるでしょう」と述べました。

ホプキンス氏は同意しないが、ChatGPT を訓練できる量子コンピューターが登場する可能性は低いことを認めているタイプのモデルも近々登場予定です。同氏は、「わずか433量子ビットの量子コンピューターでこれを達成することは不可能ですが、私たちは可能な量子機械学習実験の数を拡大するために毎年進歩しています。人々は徐々に量子機械学習モデルが変化するのを目にすることになるはずです」と述べました。より多用途に。」

以上が量子機械学習を実用的なアプリケーションに導入する準備はできていますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles