Python コードを使用して画像からモアレを除去する方法

PHPz
リリース: 2023-05-16 22:40:24
転載
995 人が閲覧しました

1. はじめに

感光性エレメントのピクセルの空間周波数が画像内のストライプの空間周波数に近い場合、新たな波状の干渉縞、いわゆるモアレ パターンが発生する可能性があります。生産される。センサーの格子状のテクスチャは、そのようなパターンの 1 つを作成します。パターン内の細いストリップがセンサーの構造と小さな角度で交差すると、画像に顕著な干渉効果が生じます。この現象は、布地などの細かいテクスチャを使用したファッション写真でよく見られます。このモアレパターンは明るさや色によって現れる場合があります。ただし、ここではリメイク時に発生した画像モアレのみを処理します。

再キャプチャとは、コンピュータ画面から写真をキャプチャするか、画面に向かって写真を撮ることです。この方法では、写真上にモアレ パターンが生成されます

Python コードを使用して画像からモアレを除去する方法

この論文の主な処理アイデア

  • 元の画像に対して Haar 変換を実行して、4 つのダウンサンプリングされた特徴マップ (2 サンプリングされた cA、水平方向の水平高周波 cH、垂直方向) を取得します。元の画像の下の垂直高周波 cV、斜め斜め高周波 cD)

  • 次に、4 つの独立した CNN を使用して 4 つのダウンサンプリングされた特徴マップを畳み込み、プールし、特徴情報を抽出します

  • 元のテキストは、次に、3 つの高周波情報の畳み込みとプーリングの結果の各チャネルと各ピクセルを比較し、前のステップを完了するまでに max

  • かかります。得られた結果と cA 畳み込みプーリング後の結果をデカルト積にします

論文アドレス

2. ネットワーク構造の再現

&emsp ;  下図に示すように、このプロジェクトは論文の画像デモワール手法を再現し、データ処理部分を修正し、ネットワーク構造もソースコード内の構造を参照して、画像の 4 つのダウンサンプリングされた特徴マップを生成します。 、論文内の 3 つの代わりに、具体的な処理方法についてはネットワーク構造を参照できます。

Python コードを使用して画像からモアレを除去する方法

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
# import pywt
from paddle.nn import Linear, Dropout, ReLU
from paddle.nn import Conv2D, MaxPool2D
class mcnn(nn.Layer):
    def __init__(self, num_classes=1000):
        super(mcnn, self).__init__()
        self.num_classes = num_classes
        self._conv1_LL = Conv2D(3,32,7,stride=2,padding=1,)      
        # self.bn1_LL = nn.BatchNorm2D(128)
        self._conv1_LH = Conv2D(3,32,7,stride=2,padding=1,)  
        # self.bn1_LH = nn.BatchNorm2D(256)
        self._conv1_HL = Conv2D(3,32,7,stride=2,padding=1,)
        # self.bn1_HL = nn.BatchNorm2D(512)
        self._conv1_HH = Conv2D(3,32,7,stride=2,padding=1,)
        # self.bn1_HH = nn.BatchNorm2D(256)
        self.pool_1_LL = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self.pool_1_LH = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self.pool_1_HL = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self.pool_1_HH = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self._conv2 = Conv2D(32,16,3,stride=2,padding=1,)
        self.pool_2 = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self.dropout2 = Dropout(p=0.5)
        self._conv3 = Conv2D(16,32,3,stride=2,padding=1,)
        self.pool_3 = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self._conv4 = Conv2D(32,32,3,stride=2,padding=1,)
        self.pool_4 = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
        self.dropout4 = Dropout(p=0.5)
        # self.bn1_HH = nn.BatchNorm1D(256)
        self._fc1 = Linear(in_features=64,out_features=num_classes)
        self.dropout5 = Dropout(p=0.5)
        self._fc2 = Linear(in_features=2,out_features=num_classes)
    def forward(self, inputs1, inputs2, inputs3, inputs4):
        x1_LL = self._conv1_LL(inputs1)
        x1_LL = F.relu(x1_LL)
        x1_LH = self._conv1_LH(inputs2)
        x1_LH = F.relu(x1_LH)
        x1_HL = self._conv1_HL(inputs3)
        x1_HL = F.relu(x1_HL)
        x1_HH = self._conv1_HH(inputs4)
        x1_HH = F.relu(x1_HH)
        pool_x1_LL = self.pool_1_LL(x1_LL)
        pool_x1_LH = self.pool_1_LH(x1_LH)
        pool_x1_HL = self.pool_1_HL(x1_HL)
        pool_x1_HH = self.pool_1_HH(x1_HH)
        temp = paddle.maximum(pool_x1_LH, pool_x1_HL)
        avg_LH_HL_HH = paddle.maximum(temp, pool_x1_HH)
        inp_merged = paddle.multiply(pool_x1_LL, avg_LH_HL_HH)
        x2 = self._conv2(inp_merged)
        x2 = F.relu(x2)
        x2 = self.pool_2(x2)
        x2 = self.dropout2(x2)
        x3 = self._conv3(x2)
        x3 = F.relu(x3)
        x3 = self.pool_3(x3)
        x4 = self._conv4(x3)
        x4 = F.relu(x4)
        x4 = self.pool_4(x4)
        x4 = self.dropout4(x4)
        x4 = paddle.flatten(x4, start_axis=1, stop_axis=-1)
        x5 = self._fc1(x4)
        x5 = self.dropout5(x5)
        out = self._fc2(x5)
        return out
model_res = mcnn(num_classes=2)
paddle.summary(model_res,[(1,3,512,384),(1,3,512,384),(1,3,512,384),(1,3,512,384)])
ログイン後にコピー
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Conv2D-1      [[1, 3, 512, 384]]   [1, 32, 254, 190]        4,736     
   Conv2D-2      [[1, 3, 512, 384]]   [1, 32, 254, 190]        4,736     
   Conv2D-3      [[1, 3, 512, 384]]   [1, 32, 254, 190]        4,736     
   Conv2D-4      [[1, 3, 512, 384]]   [1, 32, 254, 190]        4,736     
  MaxPool2D-1   [[1, 32, 254, 190]]    [1, 32, 127, 95]          0       
  MaxPool2D-2   [[1, 32, 254, 190]]    [1, 32, 127, 95]          0       
  MaxPool2D-3   [[1, 32, 254, 190]]    [1, 32, 127, 95]          0       
  MaxPool2D-4   [[1, 32, 254, 190]]    [1, 32, 127, 95]          0       
   Conv2D-5      [[1, 32, 127, 95]]    [1, 16, 64, 48]         4,624     
  MaxPool2D-5    [[1, 16, 64, 48]]     [1, 16, 32, 24]           0       
   Dropout-1     [[1, 16, 32, 24]]     [1, 16, 32, 24]           0       
   Conv2D-6      [[1, 16, 32, 24]]     [1, 32, 16, 12]         4,640     
  MaxPool2D-6    [[1, 32, 16, 12]]      [1, 32, 8, 6]            0       
   Conv2D-7       [[1, 32, 8, 6]]       [1, 32, 4, 3]          9,248     
  MaxPool2D-7     [[1, 32, 4, 3]]       [1, 32, 2, 1]            0       
   Dropout-2      [[1, 32, 2, 1]]       [1, 32, 2, 1]            0       
   Linear-1          [[1, 64]]              [1, 2]              130      
   Dropout-3          [[1, 2]]              [1, 2]               0       
   Linear-2           [[1, 2]]              [1, 2]               6       
===========================================================================
Total params: 37,592
Trainable params: 37,592
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 9.00
Forward/backward pass size (MB): 59.54
Params size (MB): 0.14
Estimated Total Size (MB): 68.68
---------------------------------------------------------------------------
{'total_params': 37592, 'trainable_params': 37592}
ログイン後にコピー

3. データの前処理

  ソース コードとは異なり、このプロジェクトは画像のウェーブレット分解部分をデータに統合します。読み込み部分を、ソースコード上でオフラインでウェーブレット分解を行って画像を保存するのではなく、オンラインでウェーブレット分解を行うように変更しました。まず、ウェーブレット分解の関数を定義します

!pip install PyWavelets
ログイン後にコピー
import numpy as np
import pywt
def splitFreqBands(img, levRows, levCols):
    halfRow = int(levRows/2)
    halfCol = int(levCols/2)
    LL = img[0:halfRow, 0:halfCol]
    LH = img[0:halfRow, halfCol:levCols]
    HL = img[halfRow:levRows, 0:halfCol]
    HH = img[halfRow:levRows, halfCol:levCols]
    return LL, LH, HL, HH
def haarDWT1D(data, length):
    avg0 = 0.5;
    avg1 = 0.5;
    dif0 = 0.5;
    dif1 = -0.5;
    temp = np.empty_like(data)
    # temp = temp.astype(float)
    temp = temp.astype(np.uint8)
    h = int(length/2)
    for i in range(h):
        k = i*2
        temp[i] = data[k] * avg0 + data[k + 1] * avg1;
        temp[i + h] = data[k] * dif0 + data[k + 1] * dif1;
    data[:] = temp
# computes the homography coefficients for PIL.Image.transform using point correspondences
def fwdHaarDWT2D(img):
    img = np.array(img)
    levRows = img.shape[0];
    levCols = img.shape[1];
    # img = img.astype(float)
    img = img.astype(np.uint8)
    for i in range(levRows):
        row = img[i,:]
        haarDWT1D(row, levCols)
        img[i,:] = row
    for j in range(levCols):
        col = img[:,j]
        haarDWT1D(col, levRows)
        img[:,j] = col
    return splitFreqBands(img, levRows, levCols)
ログイン後にコピー
!cd "data/data188843/" && unzip -q 'total_images.zip'
ログイン後にコピー
import os 
recapture_keys = [ 'ValidationMoire']
original_keys = ['ValidationClear']
def get_image_label_from_folder_name(folder_name):
    """
    :param folder_name:
    :return:
    """
    for key in original_keys:
        if key in folder_name:
            return 'original'
    for key in recapture_keys:
        if key in folder_name:
            return 'recapture'
    return 'unclear'
label_name2label_id = {
    'original': 0,
    'recapture': 1,}
src_image_dir = "data/data188843/total_images"
dst_file = "data/data188843/total_images/train.txt"
image_folder = [file for file in os.listdir(src_image_dir)]
print(image_folder)
image_anno_list = []
for folder in image_folder:
    label_name = get_image_label_from_folder_name(folder)
    # label_id = label_name2label_id.get(label_name, 0)
    label_id = label_name2label_id[label_name]
    folder_path = os.path.join(src_image_dir, folder)
    image_file_list = [file for file in os.listdir(folder_path) if
                        file.endswith('.jpg') or file.endswith('.jpeg') or
                        file.endswith('.JPG') or file.endswith('.JPEG') or file.endswith('.png')]
    for image_file in image_file_list:
        # if need_root_dir:
        #     image_path = os.path.join(folder_path, image_file)
        # else:
        image_path = image_file
        image_anno_list.append(folder +"/"+image_path +"\t"+ str(label_id) + '\n')
dst_path = os.path.dirname(src_image_dir)
if not os.path.exists(dst_path):
    os.makedirs(dst_path)
with open(dst_file, 'w') as fd:
    fd.writelines(image_anno_list)
ログイン後にコピー
import paddle
import numpy as np
import pandas as pd
import PIL.Image as Image
from paddle.vision import transforms
# from haar2D import fwdHaarDWT2D
paddle.disable_static()
# 定义数据预处理
data_transforms = transforms.Compose([
    transforms.Resize(size=(448,448)),
    transforms.ToTensor(), # transpose操作 + (img / 255)
    # transforms.Normalize(      # 减均值 除标准差
    #     mean=[0.31169346, 0.25506335, 0.12432463],        
    #     std=[0.34042713, 0.29819837, 0.1375536])
    #计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]
])
# 构建Dataset
class MyDataset(paddle.io.Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, train_img_list, val_img_list, train_label_list, val_label_list, mode='train', ):
        """
        步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集
        """
        super(MyDataset, self).__init__()
        self.img = []
        self.label = []
        # 借助pandas读csv的库
        self.train_images = train_img_list
        self.test_images = val_img_list
        self.train_label = train_label_list
        self.test_label = val_label_list
        if mode == 'train':
            # 读train_images的数据
            for img,la in zip(self.train_images, self.train_label):
                self.img.append('/home/aistudio/data/data188843/total_images/'+img)
                self.label.append(paddle.to_tensor(int(la), dtype='int64'))
        else:
            # 读test_images的数据
            for img,la in zip(self.test_images, self.test_label):
                self.img.append('/home/aistudio/data/data188843/total_images/'+img)
                self.label.append(paddle.to_tensor(int(la), dtype='int64'))
    def load_img(self, image_path):
        # 实际使用时使用Pillow相关库进行图片读取即可,这里我们对数据先做个模拟
        image = Image.open(image_path).convert('RGB')
        # image = data_transforms(image)
        return image
    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        image = self.load_img(self.img[index])
        LL, LH, HL, HH = fwdHaarDWT2D(image)
        label = self.label[index]
        # print(LL.shape)
        # print(LH.shape)
        # print(HL.shape)
        # print(HH.shape)
        LL = data_transforms(LL)
        LH = data_transforms(LH)
        HL = data_transforms(HL)
        HH = data_transforms(HH)
        print(type(LL))
        print(LL.dtype)
        return LL, LH, HL, HH, np.array(label, dtype='int64')
    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        return len(self.img)
image_file_txt = '/home/aistudio/data/data188843/total_images/train.txt'
with open(image_file_txt) as fd:
    lines = fd.readlines()
train_img_list = list()
train_label_list = list()
for line in lines:
    split_list = line.strip().split()
    image_name, label_id = split_list
    train_img_list.append(image_name)
    train_label_list.append(label_id)
# print(train_img_list)
# print(train_label_list)
# 测试定义的数据集
train_dataset = MyDataset(mode='train',train_label_list=train_label_list,  train_img_list=train_img_list, val_img_list=train_img_list, val_label_list=train_label_list)
# test_dataset = MyDataset(mode='test')
# 构建训练集数据加载器
train_loader = paddle.io.DataLoader(train_dataset, batch_size=2, shuffle=True)
# 构建测试集数据加载器
valid_loader = paddle.io.DataLoader(train_dataset, batch_size=2, shuffle=True)
print('=============train dataset=============')
for LL, LH, HL, HH, label in train_dataset:
    print('label: {}'.format(label))
    break
ログイン後にコピー

4. モデルのトレーニング

model2 = paddle.Model(model_res)
model2.prepare(optimizer=paddle.optimizer.Adam(parameters=model2.parameters()),
              loss=nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())
model2.fit(train_loader,
        valid_loader,
        epochs=5,
        verbose=1,
        )
ログイン後にコピー

以上がPython コードを使用して画像からモアレを除去する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

関連ラベル:
ソース:yisu.com
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
最新の問題
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート