AI時代のデータセンターが直面する課題と投資戦略
人工知能アプリケーションは、大規模なコンピューティング能力によってサポートされる必要があります。これは、より大規模で機能豊富なデータセンターを意味します。
人工知能の応用が増加するにつれて、これらのテクノロジーによって引き起こされるデータの急増に対応するために、データセンター市場は急速に成長しています。モノのインターネット (IoT) デバイスなど、すでに利用可能な膨大なテクノロジーに人工知能を追加すると、さらに多くの顧客データが生成され、データ量が飛躍的に増加します。
結局のところ、これらのデータはすべてどこかに存在する必要があり、組織はデータセンターに移行することになります。
シェール社イノベーション担当ディレクターのケビン・シュトフマン氏は、人工知能によってコンピューティング能力の需要が増大し、人工知能専用のハードウェアへの投資、新しいデータセンター設計の採用、エッジコンピューティングなどの新興テクノロジーの探索が必要になると説明しました。 。
「人工知能アプリケーションは、複雑な深層学習モデルをトレーニングするときに多くのコンピューティング能力を必要とします」とシュトフマン氏は言います。人工知能の普及が進むにつれ、増大するコンピューティング能力の需要をサポートするために、より多くのデータセンターが必要になります。 「
AI 主導のアプリケーションではモデルのトレーニングと改善に大量のデータが必要となるため、人工知能の導入によりデータ ストレージの要件も増加します。
Shtofman 氏によると、データを保存する必要があるとのことです」 「このデータには大容量のストレージ容量が必要です。したがって、データセンターは増大する需要に対応するためにストレージ機能を拡張する必要があります。」
シュトフマン氏は、人工知能アプリケーションがますます普及するにつれ、次のように付け加えました。また、リアルタイムの処理と意思決定の必要性も高まっています。これにより、データを集中型のデータセンターに送信するのではなく、ソースに近い場所で処理するエッジ コンピューティングが台頭しました。したがって、この傾向をサポートするには、より多くのデータセンターをエッジの近くに構築する必要があります。
AI 主導のコンピューティング能力の需要
ジョーンズ ラング ラサールのテクノロジー担当マネージング ディレクターであるアンディ・クヴェングロス氏は、人工知能の機能が日常のテクノロジー機能と統合されているため、人工知能は日常のテクノロジーの機能と統合され、インテリジェンスが爆発的に消費者レベルに達すると予想されます。 「使用がより一般的になるにつれて、データセンターのコンピューティング能力に対する膨大な需要につながるだろう。これらのモデルの実行とトレーニングには大量のコンピューティング能力と大量のリソースが必要であり、そのためブレークスルーを実現できる企業が制限される」とCvengros氏は述べた。 ." 数量."
AI に必要なサーバー コンピューターの密度も大量の熱を発生するため、これに対処するために液体冷却の技術革新が発展しています。この需要の高まりに応えるため、クラウド コンピューティング企業は、わずか数年で数百メガワットの電力を獲得できる開発プロジェクトを積極的に探しています。
Cvengros 氏によると、「一次データセンター市場で利用可能な電力容量は枯渇しており、二次および三次市場はこの機会を利用して拡大できる可能性があります。」 「
Cvengros 氏は、大手クラウド コンピューティング企業が自社構築およびリース データセンター モデルを採用していると指摘しました。ハイパースケール クラウド ユーザーとコロケーション プロバイダーは、ほぼすべての市場で、サポートする高性能の土地サイトを見つけるために奔走しています。これらは巨大です。」
10 年前、10 メガワットを必要とするデータセンターは非常に大規模であると考えられていましたが、2023 年までに 100 メガワットを超えるデータセンターの建設が発表されることは珍しくありません。土地、電力、サプライ チェーンの制約により特定の市場にデータ センターを構築できない場合、データ センター全体をコロケーション プロバイダーから借りる場合があり、ニーズが小さい小規模企業にとっては十分なスペースを見つけるのが困難です。
クラウド サービス プロバイダーやデータ センター オペレーターなどの主要な関係者
シュトフマン氏は、人工知能コンピューティングによって生成される需要に応じてデータ センターを確実に成長させる上での主な関係者は、データ センター オペレーター、クラウドであると述べました。サービス プロバイダー、ハードウェア メーカー、政府機関、規制当局、データ サイエンティスト、人工知能研究者が含まれます。
データ センター オペレーターは、サプライサイド データ センターの物理インフラストラクチャの管理と保守を担当します。プロバイダーの AI アプリケーションクラウド サービス プロバイダーは、オンデマンドで提供されるコンピューティング リソースとインフラストラクチャによってサポートできます。コンピューティング能力、ストレージ、ネットワーク機能など、AI コンピューティングによって生成される需要を満たすには、十分な機能を備えていることを確認する必要があります。 #同時に、ハードウェア メーカーは、グラフィックス プロセッシング ユニット (GPU) やテンソル プロセッシング ユニット (TPU) など、供給側の人工知能コンピューティングに必要な特殊なハードウェアの設計と製造を担当します。同社は「増大する需要に対応するために、これらの特殊なコンポーネントの適切な供給を確保する必要がある」と述べた。世界的なサプライチェーンに関する最近の問題を考慮すると、これはより高いリスクです。 「
Cvengros は、パンデミック中のサプライ チェーンの課題と地政学的な緊張により、データ センターの構築と運営に必要なコンポーネントが遅れていることに同意しました。これにより、建設スケジュールが遅れましたが、需要が依然として強いため、ユーザーは以前のシステムに移行しています」
2023 年末か 2024 年末までに、空きパイプラインの新規供給の大部分がプレリースになると予想されます。大量のサプライチェーン在庫を持つサプライヤーは、ハイパースケール ビジネスを獲得するための競争で目立つことになります。
投資計画を策定する
データセンターを拡張する前に、市場と人工知能コンピューティングのニーズについて徹底的な調査と分析を行うことが重要であり、それがシュトフマン氏が強調したことです。 「これは、投資が市場のニーズと一致しており、投資収益率への明確な道筋があることを証明するのに役立ちます。この市場は非常に繁栄しているようで、複数の交通手段や役割タイプが関与しているため、エッジ コンピューティング テクノロジーの使用が必要です」 ."
この市場は他のサイクルよりもはるかに速く変化するため、包括的な戦略を開発し、頻繁に更新することをお勧めします。 「データセンター資産には、非常に特殊なインフラストラクチャ、設計、および現地の法律への準拠が必要です。初心者にとっては、経験豊富なパートナーと協力することがベスト プラクティスであり、このタイプの構築は向いていません。」
以上がAI時代のデータセンターが直面する課題と投資戦略の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

6 月 18 日のこのサイトのニュースによると、サムスン セミコンダクターは最近、最新の QLC フラッシュ メモリ (v7) を搭載した次世代データセンター グレードのソリッド ステート ドライブ BM1743 をテクノロジー ブログで紹介しました。 ▲Samsung QLCデータセンターグレードのソリッドステートドライブBM1743 4月のTrendForceによると、QLCデータセンターグレードのソリッドステートドライブの分野で、SamsungとSK Hynixの子会社であるSolidigmだけが企業向け顧客検証に合格したという。その時。前世代の v5QLCV-NAND (このサイトの注: Samsung v6V-NAND には QLC 製品がありません) と比較して、Samsung v7QLCV-NAND フラッシュ メモリは積層数がほぼ 2 倍になり、記憶密度も大幅に向上しました。同時に、v7QLCV-NAND の滑らかさ

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究
