Pythonを使用した取引戦略とポートフォリオ分析
この記事では、取引戦略のパフォーマンスを測定します。そして、債券、株式、不動産という 4 つの資産クラスを使用するシンプルなモメンタム取引戦略を開発します。これらの資産クラスは相関関係が低いため、優れたリスクバランスのオプションとなります。
モメンタム取引戦略
トレーダーや投資家はモメンタムの影響を長い間認識しているため、この戦略はモメンタムに基づいています。見られるように、幅広い市場と時間枠。したがって、私たちはそれをモメンタム戦略と呼びます。トレンドフォローまたはタイムシリーズモメンタム(TSM)は、単一の商品でこれらの戦略を使用することの別名です。基本的なモメンタム戦略を作成し、TCS でテストしてそのパフォーマンスを確認します。
TSM 戦略分析
まず、いくつかのライブラリをインポートします
import numpy as np import pandas as pd import matplotlib.pyplot as plt import yfinance as yf import ffn %matplotlib inline
基本的なモメンタム戦略関数 TSMStrategy を構築します。この関数は、時系列の対数リターン、対象期間、およびショートが許可されるかどうかのブール変数を介して、期待されるパフォーマンスを返します。
def TSMStrategy(returns, period=1, shorts=False): if shorts: position = returns.rolling(period).mean().map( lambda x: -1 if x <= 0 else 1) else: position = returns.rolling(period).mean().map( lambda x: 0 if x <= 0 else 1) performance = position.shift(1) * returns return performance ticker = 'TCS' yftcs = yf.Ticker(ticker) data = yftcs.history(start='2005-01-01', end='2021-12-31') returns = np.log(data['Close'] / data['Close'].shift(1)).dropna() performance = TSMStrategy(returns, period=1, shorts=False).dropna() years = (performance.index.max() - performance.index.min()).days / 365 perf_cum = np.exp(performance.cumsum()) tot = perf_cum[-1] - 1 ann = perf_cum[-1] ** (1 / years) - 1 vol = performance.std() * np.sqrt(252) rfr = 0.02 sharpe = (ann - rfr) / vol print(f"1-day TSM Strategy yields:" + f"nt{tot*100:.2f}% total returns" + f"nt{ann*100:.2f}% annual returns" + f"nt{sharpe:.2f} Sharpe Ratio") tcs_ret = np.exp(returns.cumsum()) b_tot = tcs_ret[-1] - 1 b_ann = tcs_ret[-1] ** (1 / years) - 1 b_vol = returns.std() * np.sqrt(252) b_sharpe = (b_ann - rfr) / b_vol print(f"Baseline Buy-and-Hold Strategy yields:" + f"nt{b_tot*100:.2f}% total returns" + f"nt{b_ann*100:.2f}% annual returns" + f"nt{b_sharpe:.2f} Sharpe Ratio")
関数の出力は次のとおりです。
1-day TSM Strategy yields: -45.15% total returns -7.10% annual returns -0.17 Sharpe Ratio Baseline Buy-and-Hold Strategy yields: -70.15% total returns -13.78% annual returns -0.22 Sharpe Ratio
妥当な年率リターンという観点から見ると、1 日 TSM 戦略はバイ アンド ホールド戦略よりも優れています。 1 日のルックバックには多くの誤った傾向が含まれる可能性があるため、異なる期間を試してそれらがどのように比較されるかを確認しました。ここでは、モデルは 3、5、15、30、90 日間ループで実行されます。
import matplotlib.gridspec as gridspec periods = [3, 5, 15, 30, 90] fig = plt.figure(figsize=(12, 10)) gs = fig.add_gridspec(4, 4) ax0 = fig.add_subplot(gs[:2, :4]) ax1 = fig.add_subplot(gs[2:, :2]) ax2 = fig.add_subplot(gs[2:, 2:]) ax0.plot((np.exp(returns.cumsum()) - 1) * 100, label=ticker, linestyle='-') perf_dict = {'tot_ret': {'buy_and_hold': (np.exp(returns.sum()) - 1)}} perf_dict['ann_ret'] = {'buy_and_hold': b_ann} perf_dict['sharpe'] = {'buy_and_hold': b_sharpe} for p in periods: log_perf = TSMStrategy(returns, period=p, shorts=False) perf = np.exp(log_perf.cumsum()) perf_dict['tot_ret'][p] = (perf[-1] - 1) ann = (perf[-1] ** (1/years) - 1) perf_dict['ann_ret'][p] = ann vol = log_perf.std() * np.sqrt(252) perf_dict['sharpe'][p] = (ann - rfr) / vol ax0.plot((perf - 1) * 100, label=f'{p}-Day Mean') ax0.set_ylabel('Returns (%)') ax0.set_xlabel('Date') ax0.set_title('Cumulative Returns') ax0.grid() ax0.legend() _ = [ax1.bar(i, v * 100) for i, v in enumerate(perf_dict['ann_ret'].values())] ax1.set_xticks([i for i, k in enumerate(perf_dict['ann_ret'])]) ax1.set_xticklabels([f'{k}-Day Mean' if type(k) is int else ticker for k in perf_dict['ann_ret'].keys()], rotation=45) ax1.grid() ax1.set_ylabel('Returns (%)') ax1.set_xlabel('Strategy') ax1.set_title('Annual Returns') _ = [ax2.bar(i, v) for i, v in enumerate(perf_dict['sharpe'].values())] ax2.set_xticks([i for i, k in enumerate(perf_dict['sharpe'])]) ax2.set_xticklabels([f'{k}-Day Mean' if type(k) is int else ticker for k in perf_dict['sharpe'].keys()], rotation=45) ax2.grid() ax2.set_ylabel('Sharpe Ratio') ax2.set_xlabel('Strategy') ax2.set_title('Sharpe Ratio') plt.tight_layout() plt.show()
チャート上の結果を見ると、15 日間のモメンタム指標が最良の結果を提供していることがわかります。ただし、他の期間の結果はまちまちです。これは私たちの戦略が信頼できないことを示しています。したがって、15日チャートが下落または横ばいのときに取引を終了するのではなく、最高値付近でストップまたはトレーリングストップを使用して取引を終了することもできます。
ポートフォリオ分析
これまで、Python でトレーディング戦略を作成してきました。以下では、観察と分析を容易にするために、一般的なポートフォリオの特性を測定してプロットします。
ポートフォリオ分析
まず、いくつかの重要なライブラリをインポートし、データの実行を観察します。
import pandas_datareader.data as web stocks = ['SPY','GLD','TLT','HYG'] data = web.DataReader(stocks,data_source='yahoo',start='01/01/2019')['Adj Close'] data.sort_index(ascending=True,inplace=True) perf = data.calc_stats() perf.plot()
対数リターン
対数リターンは、指数関数的な成長率を計算するために使用されます。各サブ期間の価格変化の割合を計算する代わりに、その期間のオーガニック成長指数を計算します。まず、データ内の各株価の対数リターンを含む df を作成し、次に各対数リターンのヒストグラムを作成します。
returns = data.to_log_returns().dropna() print(returns.head()) Symbols SPY GLD TLT HYG Date 2019-01-03 -0.024152 0.009025 0.011315 0.000494 2019-01-04 0.032947 -0.008119 -0.011642 0.016644 2019-01-07 0.007854 0.003453 -0.002953 0.009663 2019-01-08 0.009351 -0.002712 -0.002631 0.006470 2019-01-09 0.004663 0.006398 -0.001566 0.001193
ヒストグラムは次のとおりです:
ax = returns.hist(figsize=(20, 10),bins=30)
4 つの資産クラスすべての正規分布を示すヒストグラム。正規分布を持つサンプルには、算術平均と、平均の上下に等しい分布があります (ガウス分布とも呼ばれる正規分布は対称です)。リターンが正規分布する場合、リターンの 99% 以上が平均の 3 標準偏差以内に収まると予想されます。これらの釣鐘型の正規分布の特徴により、アナリストや投資家は株式の期待収益とリスクについてより適切な統計的推論を行うことができます。ベルカーブを持つ株は通常、ボラティリティが低く予測可能な優良銘柄です。
最大リトレースメント率 DRAWDOWN
DRAWDOWN とは、相対的に低い値に低下することを指します。これは投資家にとって考慮すべき重要なリスク要因です。減少戦略を視覚的に表現してみましょう。
ffn.to_drawdown_series(data).plot(figsize=(15,10))
2020 年上半期には 4 つの資産すべてが下落し、SPY が 0.5% という最大の下落を経験しました。そして、2020年上半期にはすべての資産がすぐに回復しました。これは高い資産回収率を示しています。これらの資産は 2020 年 7 月頃にピークに達しました。この傾向に従い、回復がピークに達した後は、すべての資産クラスが小幅な下落を記録しました。この結果によると、TLTは2022年下半期に0.5%という最大の下落を経験し、その後2023年初めまでに回復すると予想されている。
マルコウィッツ平均分散最適化
1952 年、マルコウィッツ (MARKOWITZ) は、現代ポートフォリオ理論としても知られる平均分散ポートフォリオ理論を提案しました。投資家はこれらの概念を使用して、特定のレベルのリスクに基づいて期待収益を最大化するポートフォリオを構築できます。マーコウィッツ法に基づいて「最適なポートフォリオ」を生成することができます。
returns.calc_mean_var_weights().as_format('.2%') #结果 SPY 46.60% GLD 53.40% TLT 0.00% HYG 0.00% dtype: object
相関統計
相関とは、証券間の関係を測定するために使用される統計手法です。この情報は、ヒート マップを使用して表示するのが最適です。ヒートマップを使用すると、証券間の相関関係を確認できます。
returns.plot_corr_heatmap()
最好在你的投资组合中拥有相关性较低的资产。除了SPY与HYG,这四个资产类别的相关性都很低,这对我们的投资组合是不利的:因为如果拥有高度相关的不同资产组,即使你将风险分散在它们之间,从投资组合构建的角度来看,收益也会很少。
总结
通过分析和绘制的所有数据进行资产配置,可以建立一个投资组合,极大地改变基础投资的风险特征。还有很多我没有提到的,但可以帮助我们确定交易策略价值的起点。我们将在后续文章中添加更多的技术性能指标。
以上がPythonを使用した取引戦略とポートフォリオ分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









羽毛の鍵は、その漸進的な性質を理解することです。 PS自体は、勾配曲線を直接制御するオプションを提供しませんが、複数の羽毛、マッチングマスク、および細かい選択により、半径と勾配の柔らかさを柔軟に調整して、自然な遷移効果を実現できます。

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

PSフェザーリングは、イメージエッジブラー効果であり、エッジエリアのピクセルの加重平均によって達成されます。羽の半径を設定すると、ぼやけの程度を制御でき、値が大きいほどぼやけます。半径の柔軟な調整は、画像とニーズに応じて効果を最適化できます。たとえば、キャラクターの写真を処理する際に詳細を維持するためにより小さな半径を使用し、より大きな半径を使用してアートを処理するときにかすんだ感覚を作成します。ただし、半径が大きすぎるとエッジの詳細を簡単に失う可能性があり、効果が小さすぎると明らかになりません。羽毛効果は画像解像度の影響を受け、画像の理解と効果の把握に従って調整する必要があります。

PSフェザーリングは、画像の詳細の喪失、色の飽和の減少、およびノイズの増加につながる可能性があります。影響を減らすために、小さな羽の半径を使用し、レイヤーをコピーしてから羽毛をコピーし、羽毛の前後に画質を慎重に比較することをお勧めします。さらに、フェザーリングはすべてのケースに適しておらず、マスクなどのツールが画像エッジの処理に適している場合があります。

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

MySQLのインストールの一般的な理由とソリューションの失敗:1。誤ったユーザー名またはパスワード、またはMySQLサービスが開始されない場合、ユーザー名とパスワードを確認してサービスを開始する必要があります。 2。ポートの競合では、MySQLリスニングポートを変更するか、ポート3306を占めるプログラムを閉じる必要があります。 3.依存関係ライブラリがありません。システムパッケージマネージャーを使用して、必要な依存関係ライブラリをインストールする必要があります。 4.許可が不十分な場合、インストーラーを実行するには、sudoまたは管理者の権利を使用する必要があります。 5.誤った構成ファイルでは、構成が正しいことを確認するには、my.cnf構成ファイルを確認する必要があります。着実に慎重に作業することによってのみ、MySQLをスムーズにインストールできます。
