目次
1. 説明
2. numpy.ufunc 関数の概念
2.1 numpy.ufunc の概要
2.2 numpy.ufunc.nin と numpy.ufunc.nout
2.3 numpy.ufunc.nargs
2.4 numpy.ufunc.ntypes
2.5 numpy.ufunc.type
2.6 次元 ndim とshape
3. ufunc のブロードキャスト特性
四、函数格式
五、示例详解 
5.1 用输出参数
六、ufunc后的数列运算
6.1 数列运算
6.2 累计模式
6.3 对数组中某个index的元素进行局部处理 
 6.4 outer外积
 6.5 reduce方法
ホームページ バックエンド開発 Python チュートリアル Python で numpy.ufunc 関数を使用する方法

Python で numpy.ufunc 関数を使用する方法

May 18, 2023 pm 07:32 PM
python

1. 説明

numpy.ufunc の機能は何ですか?回答: これは numpy 関数です。numpy は配列テンソルをターゲットとするため、ほぼすべての関数は ufunc です。

2. numpy.ufunc 関数の概念

2.1 numpy.ufunc の概要

配列全体を要素ごとに操作する関数です。したがって、ufunc は総称であり、これらの関数は多数あります。

関数 (または UFUNC) は、要素単位で NDARRAY を操作する関数で、配列ブロードキャスト、型変換、およびその他の標準関数をサポートします。 Ufunc は、関数を「ベクトル化」し、固定数の特定の入力を受け取り、固定数の特定の出力を生成するラッパーです。基礎となるユニバーサル関数 (ufunc) の詳細を参照してください。

NumPy では、一般関数は numpy.ufunc クラスのインスタンスです。多くの組み込み関数は、コンパイルされた C コードで実装されます。基本的な ufuncs はスカラーで動作しますが、基本要素がサブ配列 (ベクトル、行列など) であり、ブロードキャストが他の次元で行われるジェネリック型もあります。 ufunc新しいウィンドウ ファクトリ関数で frompyfuncopen を使用してカスタム インスタンスを生成することもできます。

2.2 numpy.ufunc.nin と numpy.ufunc.nout

この関数は、以下に示すように、ufun 関数に対応する入力パラメータの数を表します。 。

np.add.nin
2
np.multiply.nin
2
np.power.nin
2
np.exp.nin
2
ログイン後にコピー

この関数は、次の ufunc の対応する入力パラメータの数など、ufun 関数に対応する出力パラメータの数を表します。

np.add.nout
1
np.multiply.nout
1
np.power.nout
1
np.exp.nout
1
ログイン後にコピー

2.3 numpy.ufunc.nargs

numpy.ufunc はパラメータの数に対応します。

np.add.nargs
3
np.multiply.nargs
3
np.power.nargs
3
np.exp.nargs
2
ログイン後にコピー

たとえば、np.add 関数には 3 つのパラメータと 2 つの入力があります。

a = np.array([2,4,5,6])
b = np.array([2,2,3,3])
c = np.zeros((4,))
np.add(  a,b,c )
print( c )
ログイン後にコピー
ログイン後にコピー

2.4 numpy.ufunc.ntypes

ufunc の入力データ型形式を示します: ufunc が操作できる数値 NumPy 型の数 - 合計 18 。

np.add.ntypes
18
np.multiply.ntypes
18
np.power.ntypes
17
np.exp.ntypes
7
np.remainder.ntypes
14
ログイン後にコピー

2.5 numpy.ufunc.type

np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']
np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']
np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'OO->O']
np.exp.types
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']
ログイン後にコピー

2.6 次元 ndim とshape

次元を示す 2 つのパラメータ、array.ndim と array.shape があります。ndim はテンソルの総次元数を指し、形状は各次元のベクトルの長さを指します。たとえば、次の例:

x = np.array([1, 2, 3])
print(x.ndim)
print(x.shape)
 
y = np.zeros((2, 3, 4))
print(y.ndim)
print(y.shape)
ログイン後にコピー

結果:

1
(3,)
3
(2, 3, 4)

3. ufunc のブロードキャスト特性

各パス関数は配列入力を受け入れ、入力に対してコア関数を要素ごとに実行することによって配列出力を生成します (要素は通常はスカラーですが、一般化ベクトルまたは ufunc の高次部分配列になります)。標準のブロードキャスト ルールに従って、入力がまったく同じ形状でなくても、操作が効率的に機能するようにします。ブロードキャストは 4 つのルールを通じて理解できます。

  1. すべての入力配列は、形状が 1 によって先行される新しいウィンドウの ndimopen という最大の入力配列よりも小さいです。

  2. 出力形状の各次元のサイズは、その次元のすべての入力サイズの最大値です。

  3. 特定の次元の入力のサイズがその次元の出力のサイズと一致する場合、またはその値が正確に 1 の場合、入力を計算に使用できます。

  4. 形状の次元が 1 の場合、その次元の最初のデータ エントリがその次元に沿ったすべての計算に使用されます。言い換えれば、新しいウィンドウでの ufuncopen のステッピング マシンは、その次元に沿ってステップを実行しません (その次元のストライドは 0 になります)。

ブロードキャストは、さまざまな形状の配列の処理方法を決定するために NumPy 全体で使用されます。たとえば、すべての算術演算 ( -、#) ##* ,...の間) ndarray は、新しいウィンドウでの配列操作の前にブロードキャストされます。

上記のルールが有効な結果を生成する場合、配列のセットは同じ形状に「ブロードキャスト可能」であると言われます。つまり、次の条件のいずれかが満たされます。

  • 配列はすべてまったく同じ形状です。

  • 配列はすべて同じ次元数を持ち、各次元の長さは共通の長さまたは 1 です。

  • サイズが小さすぎる配列では、属性 2 を満たすために、その形状の先頭に長さ 1 のサイズが追加されることがあります。

a.shape が (5,1) の場合、b.shape は (1,6)、c です。 shape は (6,) であり、d.shape は () であるため、 d がスカラーである場合、 a 、 b 、 c および d はすべて次元 (5, 6) にブロードキャストできます。 :

  • a は (5,6) 配列のように機能します。[:, 0] は他の列にブロードキャストされ、

  • b は機能します。 (5,6) 配列のように、b[0, :] が他の行にブロードキャストされます。
  • c被视为类似于一个(1,6)的矩阵,因此类似于一个(5,6)的矩阵,其中c的每一项元素被广播到每一行,最终,...

  • d 的作用类似于(5,6)数组,其中重复单个值。

四、函数格式

可以在通用函数 (ufunc) 的文档中找到有关 ufunc 的详细说明。

调用ufuncs格式:

op( *x[, out], where=True, **kwargs)

将 op 应用于参数 *x elementwise,广播参数。

广播规则是:

长度为 1 的维度可以添加到任一数组之前。

数组可以沿长度为 1 的维度重复。

参数:

*xarray_like

outndarray,None,或 ndarray 和 None 的元组,可选

用于放置结果的备用数组对象;如果提供,它必须具有输入广播的形状。数组元组(可能仅作为关键字参数)的长度必须等于输出的数量;对 ufunc 分配的未初始化输出使用 None。

wherearray_like,可选

此条件通过输入广播。当条件为 True 时,ufunc 的结果将被赋值给 out 数组。在其他地方,out 数组将保留其原始值。请注意,如果通过默认 out=None 创建未初始化的 out 数组,则其中条件为 False 的位置将保持未初始化状态。

五、示例详解

5.1 用输出参数

a = np.array([2,4,5,6])
b = np.array([2,2,3,3])
c = np.zeros((4,))
np.add(  a,b,c )
print( c )
ログイン後にコピー
ログイン後にコピー

5.2 行数组和列数组

a = np.arange(3)
b = np.arange(3)[:, np.newaxis]
 
print(a)
print(b)
ログイン後にコピー

输出:

[0 1 2]
[[0]
[1]
[2]]

5.3 广播规则示例

a = np.arange(3)
b = np.arange(3)[:, np.newaxis]
 
print(a)
print(b)
 
s = a + b
print(s)
ログイン後にコピー

六、ufunc后的数列运算

6.1 数列运算

在执行ufunc运算后,常常伴随数列运算,它们如下

__call__(*args, **kwargs)

Call self as a function.

accumulate(array[, axis, dtype, out])

Accumulate the result of applying the operator to all elements.

at(a, indices[, b])

Performs unbuffered in place operation on operand 'a' for elements specified by 'indices'.

outer(A, B, /, **kwargs)

Apply the ufunc op to all pairs (a, b) with a in A and b in B.

reduce(array[, axis, dtype, out, keepdims, ...])

Reduces array's dimension by one, by applying ufunc along one axis.

reduceat(array, indices[, axis, dtype, out])

Performs a (local) reduce with specified slices over a single axis.

resolve_dtypes(dtypes, *[, signature, ...])

Find the dtypes NumPy will use for the operation.

6.2 累计模式

累计模式不可以单独使用,而是与add以及multiply搭配使用:

np.add.accumulate([2, 3, 5])
array([ 2,  5, 10])
np.multiply.accumulate([2, 3, 5])
array([ 2,  6, 30])
ログイン後にコピー
np.add.accumulate(I, 0)
array([[1.,  0.],
       [1.,  1.]])
np.add.accumulate(I) # no axis specified = axis zero
array([[1.,  0.],
       [1.,  1.]])
ログイン後にコピー

6.3 对数组中某个index的元素进行局部处理

1) 将项目 0 和 1 设置为负值:

a = np.array([1, 2, 3, 4])
np.negative.at(a, [0, 1])
print( a )
array([-1, -2,  3,  4])
ログイン後にコピー

2) 递增项目 0 和 1,递增项目 2 两次:

a = np.array([1, 2, 3, 4])
np.add.at(a, [0, 1, 2, 2], 1)
print( a )
array([2, 3, 5, 4])
ログイン後にコピー

3) 将第一个数组中的项 0 和 1 添加到第二个数组,并将结果存储在第一个数组中:

a = np.array([1, 2, 3, 4])
b = np.array([1, 2])
np.add.at(a, [0, 1], b)
print(a)
array([2, 4, 3, 4])
ログイン後にコピー

6.4 outer外积

简单数组外积

np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[ 4,  5,  6],
       [ 8, 10, 12],
       [12, 15, 18]])
ログイン後にコピー

张量的外积

A = np.array([[1, 2, 3], [4, 5, 6]])
A.shape
(2, 3)
B = np.array([[1, 2, 3, 4]])
B.shape
(1, 4)
C = np.multiply.outer(A, B)
C.shape; C
(2, 3, 1, 4)
array([[[[ 1,  2,  3,  4]],
        [[ 2,  4,  6,  8]],
        [[ 3,  6,  9, 12]]],
       [[[ 4,  8, 12, 16]],
        [[ 5, 10, 15, 20]],
        [[ 6, 12, 18, 24]]]])
ログイン後にコピー

6.5 reduce方法

a = np.multiply.reduce([2,3,5])
print( a)
30
ログイン後にコピー
X = np.arange(8).reshape((2,2,2))
X
array([[[0, 1],
        [2, 3]],
       [[4, 5],
        [6, 7]]])
np.add.reduce(X, 0)
array([[ 4,  6],
       [ 8, 10]])
np.add.reduce(X) # confirm: default axis value is 0
array([[ 4,  6],
       [ 8, 10]])
np.add.reduce(X, 1)
array([[ 2,  4],
       [10, 12]])
np.add.reduce(X, 2)
array([[ 1,  5],
       [ 9, 13]])
ログイン後にコピー

您可以使用 initial 关键字参数以不同的值初始化缩减,以及在何处选择要包含的特定元素:

np.add.reduce([10], initial=5)
15
np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
array([14., 14.])
a = np.array([10., np.nan, 10])
np.add.reduce(a, where=~np.isnan(a))
20.0
ログイン後にコピー
np.minimum.reduce([], initial=np.inf)
inf
np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
array([ 1., 10.])
np.minimum.reduce([])
Traceback (most recent call last):
ログイン後にコピー

以上がPython で numpy.ufunc 関数を使用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentosのPytorchのGPUサポートはどのようにサポートされていますか CentosのPytorchのGPUサポートはどのようにサポートされていますか Apr 14, 2025 pm 06:48 PM

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

ミニオペンCentosの互換性 ミニオペンCentosの互換性 Apr 14, 2025 pm 05:45 PM

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

CentosでPytorchの分散トレーニングを操作する方法 CentosでPytorchの分散トレーニングを操作する方法 Apr 14, 2025 pm 06:36 PM

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

CentosでPytorchバージョンを選択する方法 CentosでPytorchバージョンを選択する方法 Apr 14, 2025 pm 06:51 PM

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles