可能性とリスクが共存、米政府が人工知能技術に関してテクノロジー企業に圧力をかける
ホワイトハウスでの会議中、ハリス氏はグーグル、マイクロソフト、ChatGPT開発者のOpenAI、人工知能スタートアップのアンスロピックのCEOらと面会した。バイデン米大統領も一時会合に出席した。
肯定と警告、米国政府は人工知能技術に注目しています
バイデン氏がツイッターに投稿したビデオによると、バイデン氏はこれらの企業に次のように警告した。 CEOらは「あなたたちがやっていることには大きな可能性があるが、同時に大きなリスクもある」と述べた
OpenAIが昨年11月にChatGPTを立ち上げて以来、ホワイトハウスが人工知能サミットを開催するのは今回が初めてだ年以来。ソフトウェアをプログラムしたり、会話をしたり、詩を書いたりする人間の能力をシミュレートできるツールである人工知能の開発に大きな焦点が当てられています。このテクノロジーが誤った情報を広め、雇用の喪失につながるのではないかという懸念もある。
「テクノロジー企業は、製品の安全性を確保するために倫理的および法的責任を負わなければなりません」、これがハリス氏の声明の中で表明された見解です。すべての企業は現行法を遵守し、米国国民を保護する必要があります。 "
支援と監督は密接に関係します
米国政府は、この会議の前に、国立科学財団が人工知能の研究開発を促進するために 1 億 4,000 万ドルを割り当てると発表しました。米国ホワイトハウス経営陣と予算局は、米国政府における人工知能の使用に関する政策ガイダンスを発表しようとしています。
昨年末、ChatGPT のような人工知能チャットボットは、大規模なデータ セットを分析し、文章を組み立て始めました。人間のような態度です。ほぼすべての質問に答えることができるため、世界中で人気があります。OpenAI が ChatGPT をリリースした後、Microsoft は ChatGPT の基本技術 GPT-4 を使用して Bing の検索結果を改善しました。それに応じて、Google は ChatGPT の競合他社である Bard をリリースしました.
CNET のイマド カーン氏が最近、これらのチャットボットの応答を比較してどちらがより役立つかを判断したときに発見したように、パフォーマンスに違いはあるものの、これらのツールの使用により、人々の人間に対する恐怖も高まっています。インテリジェンス関連リスクへの懸念 今年 3 月、米国の数百人の人工知能技術幹部と専門家が、業界をリードする人工知能研究所に対し、人工知能システムの開発を中止するよう求める公開書簡に署名し、人類が直面する主要な課題について言及した。この書簡に署名したのは、イーロン・マスク氏、アップル共同創設者のスティーブ・ウォズニアック氏、スタビリティAI CEOのエマド・モスタク氏、そして『サピエンス全史』の著者ユヴァル・ノア・ハラリ氏などである。
有名なコンピュータ科学者ジェフリー・ヒントン氏がここに登場「人工知能のゴッドファーザー」と呼ばれ、今月初めにグーグルを辞任した同氏は、偽情報や雇用喪失における人工知能の影響について残念そうに懸念を表明し、人々が現実と現実の区別がつかなくなるのではないかと懸念した。ゴールドマン・サックスは、今年 3 月に発表された調査報告書の中で、世界中で 3 億人もの人が人工知能によって人間の仕事を代替する能力について懸念を表明しました。仕事は生成型人工知能の影響を受ける可能性があり、米国では最大 7% の仕事が人工知能に置き換えられるリスクにさらされています。
以上が可能性とリスクが共存、米政府が人工知能技術に関してテクノロジー企業に圧力をかけるの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
