目次
1. イテレータ (foreach)
1. 反復可能オブジェクト
2. イテレータ オブジェクト
3. イテレータには、iter() と next() という 2 つの基本メソッドがあります。
4. for イテレータ ループ
5. イテレータの実装 (__next__ と __iter__)
1。範囲をシミュレートします
2. フィボナッチ数列
2. ジェネレーター
1. yield
ホームページ バックエンド開発 Python チュートリアル Python でイテレータとジェネレータを使用する方法

Python でイテレータとジェネレータを使用する方法

May 22, 2023 pm 12:13 PM
python

1. イテレータ (foreach)

1. 反復可能オブジェクト

組み込み __iter__ メソッドを持つものは反復可能オブジェクトと呼ばれます。

Python の組み込みの str、list、tuple、dict、set、file はすべて反復可能なオブジェクトです。

x = 1.__iter__  # SyntaxError: invalid syntax

# 以下都是可迭代的对象
name = 'nick'.__iter__
print(type(name))  # 'method-wrapper'>
ログイン後にコピー

2. イテレータ オブジェクト

イテラブル オブジェクトの __iter__ メソッドを実行し、得られる戻り値がイテレータ オブジェクトです。

文字列とリストのみがインデックス値に依存しますが、他の反復可能オブジェクトはインデックス値に依存できず、反復子オブジェクトのみを使用できます。

  • には組み込みの __iter__ メソッドがあり、このメソッドを実行するとイテレータ自体が取得されます。

  • 組み込みの __next__ メソッド。このメソッドを実行すると、反復子オブジェクトの値が取得されます。

s = 'hello'
iter_s = s.__iter__()
print(type(iter_s))  # 'str_iterator'> iter_s为迭代器对象

while True:
    try:
        print(iter_s.__next__())
    except StopIteration:
        break
#hello
ログイン後にコピー

3. イテレータには、iter() と next() という 2 つの基本メソッドがあります。

s = 'hello'
iter_s = iter(s) # 创建迭代器对象
print(type(iter_s))  #  iter_s为迭代器对象

while True:
    try:
        print(next(iter_s)) # 输出迭代器的下一个元素

    except StopIteration:
        break
# hello
ログイン後にコピー

4. for イテレータ ループ

通常の for ステートメントを使用して反復可能なオブジェクトを直接調べることができます

for ループはイテレータ ループと呼ばれ、in Object の後に反復可能である必要があります。 。

#str
name = 'nick' 
for x in name:
    print(x)

#list
for x in [None, 3, 4.5, "foo", lambda: "moo", object, object()]:
    print("{0}  ({1})".format(x, type(x)))

#dict
d = {
    '1': 'tasty',
    '2': 'the best',
    '3 sprouts': 'evil',
    '4': 'pretty good'
}

for sKey in d:
    print("{0} are {1}".format(sKey, d[sKey]))

#file
f = open('32.txt', 'r', encoding='utf-8')
for x in f:
    print(x)
f.close()
ログイン後にコピー

5. イテレータの実装 (__next__ と __iter__)

2 つのメソッド __iter__() と __next__() をクラスに実装した後、それをイテレータとして使用できます。

  • # __iter__() メソッドは、__next__() メソッドを実装する特別な反復子オブジェクトを返し、StopIteration 例外を通じて反復の完了を識別します。

  • __next__() メソッドは、次の反復子オブジェクトを返します。

  • StopIteration 例外は、無限ループを防ぐために反復の完了を識別するために使用されます。__next__() メソッドでは、指定されたサイクル数が完了した後に StopIteration 例外がトリガーされるように設定できます。反復を終了します。

数値を返す反復子を作成します。初期値は 1 で、徐々に 1 ずつ増加し、20 回の反復後に実行を停止します:

class MyNumbers:
  def __iter__(self):
    self.a = 1
    return self
 
  def __next__(self):
    if self.a <= 20:
      x = self.a
      self.a += 1
      return x
    else:
      raise StopIteration
 
myclass = MyNumbers()
myiter = iter(myclass)
 
for x in myiter:
  print(x)
ログイン後にコピー

1。範囲をシミュレートします

class Range:
    def __init__(self, n, stop, step):
        self.n = n
        self.stop = stop
        self.step = step

    def __next__(self):
        if self.n >= self.stop:
            raise StopIteration
        x = self.n
        self.n += self.step
        return x

    def __iter__(self):
        return self


for i in Range(1, 7, 3):
    print(i)

#1
#4
ログイン後にコピー

2. フィボナッチ数列

class Fib:
    def __init__(self):
        self._a = 0
        self._b = 1

    def __iter__(self):
        return self

    def __next__(self):
        self._a, self._b = self._b, self._a + self._b
        return self._a


f1 = Fib()
for i in f1:
    if i > 100:
        break
    print(&#39;%s &#39; % i, end=&#39;&#39;)

# 1 1 2 3 5 8 13 21 34 55 89
ログイン後にコピー

2. ジェネレーター

1. yield

Pythonでは、yieldを使用する関数をジェネレーターと呼びます。

ジェネレーターはイテレータを返す特別な関数であり、反復操作にのみ使用できます。言い換えれば、ジェネレータはイテレータです。

ジェネレーターの呼び出しプロセス中、yield が発生するたびに、関数は一時停止して現在実行中の情報をすべて保存し、yield の値を返し、次回 next() で現在の位置から続行します。メソッドが実行されます。実行します。

ジェネレータ関数を呼び出してイテレータ オブジェクトを返します。

yieldの後に複数の値 (任意の型) を続けることができますが、戻り値はタプル型になります。

  • #反復子をカスタマイズする方法を提供します

  • #yield は関数を一時停止し、現在の戻り値を提供できます
  • import sys
    
    
    def fibonacci(n):  # 函数 - 斐波那契
        a, b, counter = 0, 1, 0
        while True:
            if counter > n:
                return
            yield a
            a, b = b, a + b
            counter += 1
    
    
    f = fibonacci(10)  #f 是一个生成器
    print(type(f))  # &#39;generator&#39;>
    
    while True:
        try:
            print(next(f), end=" ")
        except StopIteration:
            sys.exit()
    ログイン後にコピー
  • yield と return:

    同じこと: どちらも関数内で使用され、どちらも値を返すことができ、戻り値には型も数値もありません。
  • 相違点: return は値を 1 回だけ返すことができ、yield は複数の値を返すことができます
  • 2. カスタム range() メソッド
  • def my_range(start, stop, step=1):
        while start < stop:
            yield start
            start += 1
    
    
    g = my_range(0, 3)
    print(f"list(g): {list(g)}")
    ログイン後にコピー
複合バージョン:

def range(*args, **kwargs):
    if not kwargs:
        if len(args) == 1:
            count = 0
            while count < args[0]:
                yield count
                count += 1
        if len(args) == 2:
            start, stop = args
            while start < stop:
                yield start
                start += 1
        if len(args) == 3:
            start, stop, step = args
            while start < stop:
                yield start
                start += step

    else:
        step = 1

        if len(args) == 1:
            start = args[0]
        if len(args) == 2:
            start, stop = args

        for k, v in kwargs.items():
            if k not in [&#39;start&#39;, &#39;step&#39;, &#39;stop&#39;]:
                raise (&#39;参数名错误&#39;)

            if k == &#39;start&#39;:
                start = v
            elif k == &#39;stop&#39;:
                stop = v
            elif k == &#39;step&#39;:
                step = v

        while start < stop:
            yield start
            start += step


for i in range(3):
    print(i)  # 0,1,2

for i in range(99, 101):
    print(i)  # 99,100

for i in range(1, 10, 3):
    print(i)  # 1,4,7

for i in range(1, step=2, stop=5):
    print(i)  # 1,3

for i in range(1, 10, step=2):
    print(i)  # 1,3,5,7,9
ログイン後にコピー

3. ジェネレーター式 (i.for .in)

リスト内包表記の [] を () に置き換えて、ジェネレーター式モードを取得します。

利点: リスト内包表記と比較して、メモリを節約でき、一度にメモリ内に 1 つの値しか生成できません。

t = (i for i in range(10))
print(t)  # <generator object  at 0x00000000026907B0>
print(next(t))  # 0
print(next(t))  # 1
ログイン後にコピー

例:

with open(&#39;32.txt&#39;, &#39;r&#39;, encoding=&#39;utf8&#39;) as f:
    nums = [len(line) for line in f]  # 列表推导式相当于直接给你一筐蛋

print(max(nums))  # 2


with open(&#39;32.txt&#39;, &#39;r&#39;, encoding=&#39;utf8&#39;) as f:
    nums = (len(line) for line in f)  # 生成器表达式相当于给你一只老母鸡。

print(max(nums))  # ValueError: I/O operation on closed file.
ログイン後にコピー

以上がPython でイテレータとジェネレータを使用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

mysqlは支払う必要がありますか mysqlは支払う必要がありますか Apr 08, 2025 pm 05:36 PM

MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

PSフェザーリングは、遷移の柔らかさをどのように制御しますか? PSフェザーリングは、遷移の柔らかさをどのように制御しますか? Apr 06, 2025 pm 07:33 PM

羽毛の鍵は、その漸進的な性質を理解することです。 PS自体は、勾配曲線を直接制御するオプションを提供しませんが、複数の羽毛、マッチングマスク、および細かい選択により、半径と勾配の柔らかさを柔軟に調整して、自然な遷移効果を実現できます。

インストール後にMySQLの使用方法 インストール後にMySQLの使用方法 Apr 08, 2025 am 11:48 AM

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

PSフェザーリングをセットアップする方法は? PSフェザーリングをセットアップする方法は? Apr 06, 2025 pm 07:36 PM

PSフェザーリングは、イメージエッジブラー効果であり、エッジエリアのピクセルの加重平均によって達成されます。羽の半径を設定すると、ぼやけの程度を制御でき、値が大きいほどぼやけます。半径の柔軟な調整は、画像とニーズに応じて効果を最適化できます。たとえば、キャラクターの写真を処理する際に詳細を維持するためにより小さな半径を使用し、より大きな半径を使用してアートを処理するときにかすんだ感覚を作成します。ただし、半径が大きすぎるとエッジの詳細を簡単に失う可能性があり、効果が小さすぎると明らかになりません。羽毛効果は画像解像度の影響を受け、画像の理解と効果の把握に従って調整する必要があります。

MySQLダウンロードファイルが破損しており、インストールできません。修復ソリューション MySQLダウンロードファイルが破損しており、インストールできません。修復ソリューション Apr 08, 2025 am 11:21 AM

mysqlダウンロードファイルは破損していますが、どうすればよいですか?残念ながら、MySQLをダウンロードすると、ファイルの破損に遭遇できます。最近は本当に簡単ではありません!この記事では、誰もが迂回を避けることができるように、この問題を解決する方法について説明します。それを読んだ後、損傷したMySQLインストールパッケージを修復するだけでなく、将来の行き詰まりを避けるために、ダウンロードとインストールプロセスをより深く理解することもできます。最初に、ファイルのダウンロードが破損した理由について話しましょう。これには多くの理由があります。ネットワークの問題は犯人です。ダウンロードプロセスの中断とネットワーク内の不安定性は、ファイル腐敗につながる可能性があります。ダウンロードソース自体にも問題があります。サーバーファイル自体が壊れており、もちろんダウンロードすると壊れています。さらに、いくつかのウイルス対策ソフトウェアの過度の「情熱的な」スキャンもファイルの破損を引き起こす可能性があります。診断問題:ファイルが本当に破損しているかどうかを判断します

MySQLはダウンロード後にインストールできません MySQLはダウンロード後にインストールできません Apr 08, 2025 am 11:24 AM

MySQLのインストール障害の主な理由は次のとおりです。1。許可の問題、管理者として実行するか、SUDOコマンドを使用する必要があります。 2。依存関係が欠落しており、関連する開発パッケージをインストールする必要があります。 3.ポート競合では、ポート3306を占めるプログラムを閉じるか、構成ファイルを変更する必要があります。 4.インストールパッケージが破損しているため、整合性をダウンロードして検証する必要があります。 5.環境変数は誤って構成されており、環境変数はオペレーティングシステムに従って正しく構成する必要があります。これらの問題を解決し、各ステップを慎重に確認して、MySQLを正常にインストールします。

MySQLインストール後にデータベースのパフォーマンスを最適化する方法 MySQLインストール後にデータベースのパフォーマンスを最適化する方法 Apr 08, 2025 am 11:36 AM

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? 高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? Apr 08, 2025 pm 06:03 PM

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

See all articles