ホームページ テクノロジー周辺機器 AI GMAC と GFLOPS の計算の簡単な分析

GMAC と GFLOPS の計算の簡単な分析

May 26, 2023 am 08:59 AM
ディープラーニング

GMAC は「Giga Multiply-Add Operations per Second」の略で、深層学習モデルの計算効率を測定するために使用される指標です。このメトリクスは、1 秒あたり 10 億回の乗算および加算演算というモデルの計算速度を表します。

GMAC と GFLOPS の計算の簡単な分析

積和演算 (MAC) は、行列の乗算、畳み込み、深層学習で一般的に使用されるその他のテンソル演算など、多くの数学的計算の基礎です。各 MAC 演算には、2 つの数値を乗算し、その結果をアキュムレータに加算することが含まれます。

GMAC インジケーターは、次の式を使用して計算できます。

<code>GMAC =(乘法累加运算次数)/(10⁹)</code>
ログイン後にコピー

乗加算演算の数は、通常、ネットワーク アーキテクチャとモデル パラメーターの次元 (重みなど) を分析することによって決定されます。そして偏見。

GMAC メトリクスを使用すると、研究者や実務者は、モデルの選択、ハードウェア要件、効率的かつ効果的な深層学習計算のための最適化戦略について情報に基づいた意思決定を行うことができます。

GMAC と GFLOPS の計算の簡単な分析

#GFLOPS は、コンピューター システムまたは特定の操作のコンピューティング パフォーマンスの尺度であり、1 秒あたり 10 億回の浮動小数点演算を表します。これは、1 秒あたりの浮動小数点演算の数であり、10 億 (ギガ) 単位で表されます。

浮動小数点演算とは、IEEE 754 浮動小数点形式で表現された実数に対して算術計算を実行することを指します。これらの演算には通常、加算、減算、乗算、除算、およびその他の数学演算が含まれます。

GFLOPS は、ハイ パフォーマンス コンピューティング (HPC) やベンチマーク、特に科学シミュレーション、データ分析、深層学習などの大量の計算タスクを必要とする分野でよく使用されます。

GFLOPS の式は次のように計算します。

<code>GFLOPS =(浮点运算次数)/(以秒为单位的运行时间)/ (10⁹)</code>
ログイン後にコピー
GFLOPS は、さまざまなコンピューター システム、プロセッサー、または特定の操作の計算能力の効果的な尺度です。浮動小数点計算を実行するハードウェアまたはアルゴリズムの速度と効率を評価するのに役立ちます。 GFLOPS は理論上のピーク パフォーマンスの尺度であり、メモリ アクセス、並列化、その他のシステム制限などの要素が考慮されていないため、現実のシナリオで達成される実際のパフォーマンスを反映していない可能性があります。

GMAC と GFLOPS の関係

<code>1 GFLOP = 2 GMAC</code>
ログイン後にコピー
これら 2 つの指標を計算したい場合、コードを手動で記述するのはさらに面倒ですが、Python にはすでに既製のライブラリが用意されています。使用方法:

ptflops ライブラリは GMAC と GFLOP を計算できます

<code>pip install ptflops</code>
ログイン後にコピー
使い方も非常に簡単です:

<code>import torchvision.models as models import torch from ptflops import get_model_complexity_info import re  #Model thats already available net = models.densenet161() macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True, verbose=True) # Extract the numerical value flops = eval(re.findall(r'([\d.]+)', macs)[0])*2 # Extract the unit flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0]  print('Computational complexity: {:</code>
ログイン後にコピー
結果は次のとおりです:

<code>Computational complexity: 7.82 GMac Computational complexity: 15.64 GFlops Number of parameters: 28.68 M</code>
ログイン後にコピー
モデルをカスタマイズして見てみましょう 結果は正しいですか?

<code>import os import torch from torch import nn  class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10),)  def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits  custom_net = NeuralNetwork()  macs, params = get_model_complexity_info(custom_net, (28, 28), as_strings=True, print_per_layer_stat=True, verbose=True) # Extract the numerical value flops = eval(re.findall(r'([\d.]+)', macs)[0])*2  # Extract the unit flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0] print('Computational complexity: {:</code>
ログイン後にコピー
結果は次のとおりです:

<code>Computational complexity: 670.73 KMac Computational complexity: 1341.46 KFlops Number of parameters: 669.71 k</code>
ログイン後にコピー
デモの便宜上、完全に接続された層のコードのみを記述しますGMAC を手動で計算します。モデルの重みパラメーターを反復処理し、乗算および加算演算の回数の形状を計算することは重みパラメーターに依存します。これが GMAC を計算するための鍵となります。 GMAC で必要な全結合層の重みを計算する式は、2 x (入力次元 x 出力次元) です。合計の GMAC 値は、モデルの構造に基づいて、各線形層の重みパラメーターの形状を乗算およ​​び累積することによって取得されます。

<code>import torch import torch.nn as nn  def compute_gmac(model): gmac_count = 0 for param in model.parameters(): shape = param.shape if len(shape) == 2:# 全连接层的权重 gmac_count += shape[0] * shape[1] * 2 gmac_count = gmac_count / 1e9# 转换为十亿为单位 return gmac_count</code>
ログイン後にコピー
上記のモデルによると、GMAC の計算結果は次のようになります。

<code>0.66972288</code>
ログイン後にコピー
GMAC の結果は 10 億単位なので、次を使用して計算した結果とあまり変わりません。上記のクラスライブラリ。最後に、畳み込みの GMAC の計算は少し複雑です。式は ((入力チャネル x 畳み込みカーネルの高さ x 畳み込みカーネルの幅) x 出力チャネル) x 2 です。ここでは単純なコードを示しますが、完全に正しいとは限りません。 ##りー

以上がGMAC と GFLOPS の計算の簡単な分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python での感情分析に BERT を使用する方法と手順 Python での感情分析に BERT を使用する方法と手順 Jan 22, 2024 pm 04:24 PM

BERT は、2018 年に Google によって提案された事前トレーニング済みの深層学習言語モデルです。正式名は BidirectionEncoderRepresentationsfromTransformers で、Transformer アーキテクチャに基づいており、双方向エンコードの特性を備えています。従来の一方向コーディング モデルと比較して、BERT はテキストを処理するときにコンテキスト情報を同時に考慮できるため、自然言語処理タスクで優れたパフォーマンスを発揮します。その双方向性により、BERT は文内の意味関係をより深く理解できるようになり、それによってモデルの表現能力が向上します。事前トレーニングおよび微調整方法を通じて、BERT は感情分析、命名などのさまざまな自然言語処理タスクに使用できます。

一般的に使用される AI 活性化関数の分析: Sigmoid、Tanh、ReLU、Softmax のディープラーニングの実践 一般的に使用される AI 活性化関数の分析: Sigmoid、Tanh、ReLU、Softmax のディープラーニングの実践 Dec 28, 2023 pm 11:35 PM

活性化関数は深層学習において重要な役割を果たしており、ニューラル ネットワークに非線形特性を導入することで、ネットワークが複雑な入出力関係をより適切に学習し、シミュレートできるようになります。活性化関数の正しい選択と使用は、ニューラル ネットワークのパフォーマンスとトレーニング結果に重要な影響を与えます。この記事では、よく使用される 4 つの活性化関数 (Sigmoid、Tanh、ReLU、Softmax) について、導入、使用シナリオ、利点、欠点と最適化ソリューション アクティベーション関数を包括的に理解できるように、次元について説明します。 1. シグモイド関数 シグモイド関数の公式の概要: シグモイド関数は、任意の実数を 0 と 1 の間にマッピングできる一般的に使用される非線形関数です。通常は統一するために使用されます。

潜在空間の埋め込み: 説明とデモンストレーション 潜在空間の埋め込み: 説明とデモンストレーション Jan 22, 2024 pm 05:30 PM

潜在空間埋め込み (LatentSpaceEmbedding) は、高次元データを低次元空間にマッピングするプロセスです。機械学習と深層学習の分野では、潜在空間埋め込みは通常、高次元の入力データを低次元のベクトル表現のセットにマッピングするニューラル ネットワーク モデルです。このベクトルのセットは、「潜在ベクトル」または「潜在ベクトル」と呼ばれることがよくあります。エンコーディング」。潜在空間埋め込みの目的は、データ内の重要な特徴をキャプチャし、それらをより簡潔でわかりやすい形式で表現することです。潜在空間埋め込みを通じて、低次元空間でデータの視覚化、分類、クラスタリングなどの操作を実行し、データをよりよく理解して活用できます。潜在空間埋め込みは、画像生成、特徴抽出、次元削減など、多くの分野で幅広い用途があります。潜在空間埋め込みがメイン

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い 1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い Mar 02, 2024 am 11:19 AM

今日の急速な技術変化の波の中で、人工知能 (AI)、機械学習 (ML)、および深層学習 (DL) は輝かしい星のようなもので、情報技術の新しい波をリードしています。これら 3 つの単語は、さまざまな最先端の議論や実践で頻繁に登場しますが、この分野に慣れていない多くの探検家にとって、その具体的な意味や内部のつながりはまだ謎に包まれているかもしれません。そこで、まずはこの写真を見てみましょう。ディープラーニング、機械学習、人工知能の間には密接な相関関係があり、進歩的な関係があることがわかります。ディープラーニングは機械学習の特定の分野であり、機械学習

Elasticsearch ベクトル検索の開発の歴史を基礎から実践まで振り返ります。 Elasticsearch ベクトル検索の開発の歴史を基礎から実践まで振り返ります。 Oct 23, 2023 pm 05:17 PM

1. はじめに ベクトル検索は、最新の検索および推奨システムの中核コンポーネントとなっています。テキスト、画像、音声などの複雑なオブジェクトを数値ベクトルに変換し、多次元空間で類似性検索を実行することにより、効率的なクエリ マッチングとレコメンデーションが可能になります。基本から実践まで、Elasticsearch の開発の歴史を確認します。この記事では、各段階の特徴と進歩に焦点を当てて、Elasticsearch ベクトル検索の開発の歴史を振り返ります。歴史をガイドとして考慮すると、Elasticsearch ベクトル検索の全範囲を確立するのは誰にとっても便利です。

超強い!深層学習アルゴリズムのトップ 10! 超強い!深層学習アルゴリズムのトップ 10! Mar 15, 2024 pm 03:46 PM

2006 年にディープ ラーニングの概念が提案されてから、ほぼ 20 年が経過しました。ディープ ラーニングは、人工知能分野における革命として、多くの影響力のあるアルゴリズムを生み出してきました。では、ディープラーニングのトップ 10 アルゴリズムは何だと思いますか?私の考えでは、ディープ ラーニングのトップ アルゴリズムは次のとおりで、いずれもイノベーション、アプリケーションの価値、影響力の点で重要な位置を占めています。 1. ディープ ニューラル ネットワーク (DNN) の背景: ディープ ニューラル ネットワーク (DNN) は、多層パーセプトロンとも呼ばれ、最も一般的なディープ ラーニング アルゴリズムです。最初に発明されたときは、コンピューティング能力のボトルネックのため疑問視されていました。最近まで長年にわたる計算能力、データの爆発的な増加によって画期的な進歩がもたらされました。 DNN は、複数の隠れ層を含むニューラル ネットワーク モデルです。このモデルでは、各層が入力を次の層に渡し、

AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 Jul 16, 2024 am 12:08 AM

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。

See all articles