目次
1. 問題の紹介
2. MySQL での使用制限
3. ディープページングの最適化戦略
方法 1: 主キー ID または一意のインデックスの最適化を使用する
方法 2: インデックス カバレッジの最適化を使用する
方法 3: インデックスに基づいて並べ替えます
方法四:基于索引使用prepare
方法五:利用"子查询+索引"快速定位数据 
方法六:利用复合索引进行优化
ホームページ データベース mysql チュートリアル MySQLチューニングにおけるSQLクエリのディープページング問題を解決する方法

MySQLチューニングにおけるSQLクエリのディープページング問題を解決する方法

May 27, 2023 am 09:58 AM
mysql sql

1. 問題の紹介

たとえば、現在 test_user というテーブルがあり、このテーブルに 300 万のデータを挿入します:

CREATE TABLE `test_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键id',
  `user_id` varchar(36) NOT NULL COMMENT '用户id',
  `user_name` varchar(30) NOT NULL COMMENT '用户名称',
  `phone` varchar(20) NOT NULL COMMENT '手机号码',
  `lan_id` int(9) NOT NULL COMMENT '本地网',
  `region_id` int(9) NOT NULL COMMENT '区域',
  `create_time` datetime NOT NULL COMMENT '创建时间',
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB AUTO_INCREMENT;
ログイン後にコピー

データベース開発のプロセスでは、よく次のようなものを使用します。 paging のコア技術は、limit start, count ページング ステートメントを使用してデータを読み取ることです。

0、10000、100000、500000、1000000、1800000 (1 ページあたり 100 エントリ) から始まるページングの実行時間を見てみましょう。

SELECT * FROM test_user LIMIT 0,100;         # 0.031
SELECT * FROM test_user LIMIT 10000,100;     # 0.047
SELECT * FROM test_user LIMIT 100000,100;    # 0.109
SELECT * FROM test_user LIMIT 500000,100;    # 0.219
SELECT * FROM test_user LIMIT 1000000,100;   # 0.547s
SELECT * FROM test_user LIMIT 1800000,100;   # 1.625s
ログイン後にコピー

開始記録が増加すると、時間も増加することがわかりました。開始レコードを 290 万に変更した後、ページング ステートメントの制限と開始ページ番号

SELECT * FROM test_user LIMIT 2900000,100; # 3.062s
ログイン後にコピー

の間に大きな相関関係があることがわかります。データの量が大きい値が大きいほど、クエリ速度が遅くなります。

では、なぜ上記のような状況が起こるのでしょうか?

回答: limit 2900000,100 の構文は、実際には、mysql が最初の 2900100 個のデータをスキャンし、最初の 3000000 行を破棄することを意味するため、このステップは実際には無駄です。

これから、次の 2 つのことが結論付けられます。

limit ステートメントのクエリ時間は、開始レコードの位置に比例します。

Mysql の limit ステートメントは非常に便利ですが、多数のレコードを持つテーブルで直接使用するのには適していません。

2. MySQL での使用制限

limit 句を使用すると、select ステートメントに指定された数のレコードを強制的に返すことができます。その構文形式は次のとおりです:

SELECT * FROM 表名 limit m,n;
SELECT * FROM table LIMIT [offset,] rows;
ログイン後にコピー

制限は 1 つまたは 2 つの数値パラメータを受け入れます。パラメータは整数定数である必要があります。2 つのパラメータが指定された場合:

最初のパラメータは、最初に返されたレコード行のオフセットを指定します。
2 番目のパラメータは、

2.1 m は m 1 レコード行から検索を開始することを意味し、n は n 個のデータを取得することを意味します。 (mは0でも可)

SELECT * FROM 表名 limit 6,5;
ログイン後にコピー

上記SQLはレコード7行目から5個のデータを取り出すことを示しています

2.2 n は -1 に設定できることに注意してください。n が -1 の場合、データの最後の部分が取得されるまで行 m1 から取得することを意味します。

SELECT * FROM 表名 limit 6,-1;
ログイン後にコピー

上記の SQL は、すべてのデータが取得されることを示します。 6 番目のレコード行が取得された後

2.3 m のみを指定すると、最初のレコード行から m 個のレコードが取り出されることを意味します

#
SELECT * FROM 表名 limit 6;
ログイン後にコピー

2.4 最初の 3 レコードを年齢の逆順に取得します。 Row

select * from student order by age desc limit 3;
ログイン後にコピー

2.5 最初の 3 行をスキップし、次の 2 行をフェッチします

select * from student order by age desc limit 3,2;
ログイン後にコピー

3. ディープページングの最適化戦略

方法 1: 主キー ID または一意のインデックスの最適化を使用する

つまり、最初に最後のページングの最大 ID を見つけてから、その ID のインデックスを使用します。クエリ:

SELECT * FROM test_user WHERE id>1000000 LIMIT 100; # 0.047秒
ログイン後にコピー

この最適化された SQL を使用すると、前のクエリよりも高速になります。すでに 11 倍高速です。主キー ID の使用に加えて、一意のインデックスを使用して特定のデータをすばやく見つけることもできるため、テーブル全体のスキャンを回避できます。以下は、1000 ~ 1019 の範囲の一意のキー (pk) を持つデータを読み取るための、対応する SQL 最適化コードです。

SELECT * FROM 表名称 WHERE pk>=1000 ORDER BY pk ASC LIMIT 0,20
ログイン後にコピー

理由: インデックスのスキャンは非常に高速になります。

該当するシナリオ: データがクエリされ、pk または id に従って並べ替えられ、すべてのデータが欠落していない場合は、この方法で最適化できます。そうしないと、ページング操作によってデータが漏洩します。

方法 2: インデックス カバレッジの最適化を使用する

インデックス クエリを使用するステートメントにそのインデックス列のみが含まれている場合 (つまり、インデックス カバレッジ)、そうすれば、この状況はすぐに質問されます。

インデックス カバレッジ クエリがなぜこれほど高速なのでしょうか?

回答: インデックス検索には最適化アルゴリズムがあり、データはクエリ インデックス上にあるため、関連するデータ アドレスを見つける必要がなく、時間を大幅に節約できます。同時実行量が多い場合、Mysql はインデックスに関連付けられたキャッシュも提供します。このキャッシュを最大限に活用すると、より良い結果が得られます。

id ​​フィールドはテスト テーブル test_user の主キーであるため、主キー インデックスがデフォルトで含まれています。次に、カバリング インデックスを使用したクエリがどのように実行されるかを見てみましょう。

今回は、行 1000001 から 1000100 のデータをクエリします (カバー インデックスを使用し、id 列のみを含みます):

SELECT id FROM test_user LIMIT 1000000,100; # 0.843秒
ログイン後にコピー

この結果から、クエリ速度がフルテーブルスキャン速度 (もちろん、この SQL を繰り返し実行すると、複数のクエリを実行した後は速度が大幅に速くなり、時間のほぼ半分が節約されます。これはキャッシュによるものです。) 次に、 Explain コマンドを使用して SQL の実行計画を表示します。 SQL 実行共通インデックスが使用されていることを確認します idx_user_id:

EXPLAIN SELECT id FROM test_user LIMIT 1000000,100;
ログイン後にコピー

MySQLチューニングにおけるSQLクエリのディープページング問題を解決する方法

通常のインデックスを削除すると、実行時に主キー インデックスが使用されます。 SQL以上。通常のインデックスを削除しない場合、この場合、上記の SQL で主キー インデックスを使用する場合は、order by ステートメントを使用できます。

SELECT id FROM test_user ORDER BY id ASC LIMIT 1000000,100; # 0.250秒
ログイン後にコピー

次に、すべての列もクエリしたい場合、id>= の形式で行う方法と、join を使用する方法の 2 つがあります。

最初の書き方:

SELECT * FROM test_user WHERE ID >= (SELECT id FROM test_user ORDER BY id ASC LIMIT 1000000,1) LIMIT 100;
ログイン後にコピー

上記の SQL クエリ時間は 0.281 秒です

2 つ目の書き方:

SELECT * FROM (SELECT id FROM test_user ORDER BY id ASC LIMIT 1000000,100) a LEFT JOIN test_user b ON a.id = b.id;
ログイン後にコピー

上記の SQL クエリ時間は 0.252 秒です。

方法 3: インデックスに基づいて並べ替えます

PageNum はページ番号を表し、その値は 0 から始まり、pageSize はページごとのデータの数を表します。

SELECT * FROM 表名称 WHERE id_pk > (pageNum*pageSize) ORDER BY id_pk ASC LIMIT pageSize;
ログイン後にコピー

适应场景:

  • 适用于数据量多的情况

  • 最好ORDER BY后的列对象是主键或唯一索引

  • id数据没有缺失,可以作为序号使用

  • 使用ORDER BY操作能利用索引被消除,但结果集是稳定的

原因:

  • 索引扫描,速度会很快

  • 但MySQL的排序操作,只有ASC没有DESC。在MySQL中,索引的存储顺序是升序ASC,没有降序DESC的索引。这就是为什么默认情况下,order by 是按照升序排序的原因

方法四:基于索引使用prepare

PREPARE预编译一个SQL语句,并为其分配一个名称 stmt_name,以便以后引用该语句,预编译好的语句用EXECUTE执行。

PREPARE stmt_name FROM 'SELECT * FROM test_user WHERE id > ? ORDER BY id ASC LIMIT ?';
SET @a = 1000000;
SET @b = 100;
EXECUTE stmt_name USING @a, @b;;
ログイン後にコピー

MySQLチューニングにおけるSQLクエリのディープページング問題を解決する方法

上述SQL查询时间为0.047秒。

对于定义好的PREPARE预编译语句,我们可以使用下述命令来释放该预编译语句:

DEALLOCATE PREPARE stmt_name;
ログイン後にコピー

原因:

  • 索引扫描,速度会很快.

  • prepare语句又比一般的查询语句快一点。

方法五:利用"子查询+索引"快速定位数据

其中page表示页码,其取值从0开始;pagesize表示指的是每页多少条数据。

SELECT * FROM your_table WHERE id <= (SELECT id FROM your_table ORDER BY id DESC LIMIT ($page-1)*$pagesize ORDER BY id DESC LIMIT $pagesize);
ログイン後にコピー

方法六:利用复合索引进行优化

假设数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中id是主键自增,title用定长,info用text, vtype是tinyint,vtype是一个普通索引。

现在往里面填充数据,填充10万条记录,数据库表占用硬1.6G。

select id,title from collect limit 1000,10;
ログイン後にコピー

执行上述SQL速度很快,基本上0.01秒就OK。

select id,title from collect limit 90000,10;
ログイン後にコピー

然后再执行上述SQL,就发现非常慢,基本上平均8~9秒完成。

这个时候如果我们执行下述,我们会发现速度又变的很快,0.04秒就OK。

select id from collect order by id limit 90000,10;
ログイン後にコピー

那么这个现象的原因是什么?

答案:因为用了id主键做索引, 这里实现了索引覆盖,当然快。

所以如果想一起查询其它列的话,可以按照索引覆盖进行优化,具体如下:

select id,title from collect where id >= (select id from collect order by id limit 90000,1) limit 10;
ログイン後にコピー

再看下面的语句,带上where 条件:

select id from collect where vtype=1 order by id limit 90000,10;
ログイン後にコピー
ログイン後にコピー

可以发现这个速度上也是很慢的,用了8~9秒!

这里有一个疑惑:vtype 做了索引了啊?怎么会慢呢?

vtype做了索引是不错,如果直接对vtype进行过滤:

select id from collect where vtype=1 limit 1000,10;
ログイン後にコピー

可以看到速度还是很快的,基本上0.05秒,如果从9万开始,那就是0.05*90=4.5秒的速度了。

其实加了 order by id 就不走索引,这样做还是全表扫描,解决的办法是:复合索引

因此针对下述SQL深度分页优化时可以加一个search_index(vtype,id)复合索引:

select id from collect where vtype=1 order by id limit 90000,10;
ログイン後にコピー
ログイン後にコピー

综上: 

  • 在进行SQL查询深度分页优化时,如果对于有where条件,又想走索引用limit的,必须设计一个索引,将where放第一位,limit用到的主键放第二位,而且只能select 主键。

  • 最后根据查询出的主键走一级索引找到对应的数据。

  • 按这样的逻辑,百万级的limit 在0.0x秒就可以分完,完美解决了分页问题。

以上がMySQLチューニングにおけるSQLクエリのディープページング問題を解決する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

MySQL:簡単な学習のためのシンプルな概念 MySQL:簡単な学習のためのシンプルな概念 Apr 10, 2025 am 09:29 AM

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

phpmyadminを開く方法 phpmyadminを開く方法 Apr 10, 2025 pm 10:51 PM

次の手順でphpmyadminを開くことができます。1。ウェブサイトコントロールパネルにログインします。 2。phpmyadminアイコンを見つけてクリックします。 3。MySQL資格情報を入力します。 4.「ログイン」をクリックします。

MySQLおよびSQL:開発者にとって不可欠なスキル MySQLおよびSQL:開発者にとって不可欠なスキル Apr 10, 2025 am 09:30 AM

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。

MySQL:世界で最も人気のあるデータベースの紹介 MySQL:世界で最も人気のあるデータベースの紹介 Apr 12, 2025 am 12:18 AM

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

単一のスレッドレディスの使用方法 単一のスレッドレディスの使用方法 Apr 10, 2025 pm 07:12 PM

Redisは、単一のスレッドアーキテクチャを使用して、高性能、シンプルさ、一貫性を提供します。 I/Oマルチプレックス、イベントループ、ノンブロッキングI/O、共有メモリを使用して同時性を向上させますが、並行性の制限、単一の障害、および書き込み集約型のワークロードには適していません。

Amazon AthenaでAWS接着クローラーの使用方法 Amazon AthenaでAWS接着クローラーの使用方法 Apr 09, 2025 pm 03:09 PM

データの専門家として、さまざまなソースから大量のデータを処理する必要があります。これは、データ管理と分析に課題をもたらす可能性があります。幸いなことに、AWS GlueとAmazon Athenaの2つのAWSサービスが役立ちます。

SQLが行を削除した後にデータを回復する方法 SQLが行を削除した後にデータを回復する方法 Apr 09, 2025 pm 12:21 PM

データベースから直接削除された行を直接回復することは、バックアップまたはトランザクションロールバックメカニズムがない限り、通常不可能です。キーポイント:トランザクションロールバック:トランザクションがデータの回復にコミットする前にロールバックを実行します。バックアップ:データベースの定期的なバックアップを使用して、データをすばやく復元できます。データベーススナップショット:データベースの読み取り専用コピーを作成し、データが誤って削除された後にデータを復元できます。削除ステートメントを使用して注意してください:誤って削除されないように条件を慎重に確認してください。 WHERE句を使用します:削除するデータを明示的に指定します。テスト環境を使用:削除操作を実行する前にテストします。

なぜMySQLを使用するのですか?利点と利点 なぜMySQLを使用するのですか?利点と利点 Apr 12, 2025 am 12:17 AM

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

See all articles