目次
背景
ビジネスの背景
思考
効果
ホームページ データベース mysql チュートリアル MySQL で分位値をクエリする方法

MySQL で分位値をクエリする方法

May 27, 2023 pm 04:36 PM
mysql

背景

分位値の概念

統計やデータ分析では、データ分布の統計的特性を説明するために分位数 (または四分位数) がよく使用されます。一般に、分位値は 4 つの等しい部分、つまり、第 1 分位数 (Q1)、第 2 分位数 (Q2) (つまり中央値)、第 3 分位数 (Q3)、および極値差分 (IQR) に分割されます。このうち、データの 1/4 は第 1 分位より小さく、データの 1/4 は第 3 分位より大きく、データの中間の 50% は第 1 分位と第 3 分位の間にあります。統計では、最初の分位数は、データのセットをサイズの順に並べた後のシーケンス全体の上位 25% の数値を指し、第 2 分位数は、サイズの順に並べたデータのセットを指します。第 3 分位数は、データのセットをサイズ順に並べた後のシーケンス全体の下位 25% の数値を指します。中央値は第 2 四分位です。データ分析では、分位値はデータの分布を理解し、データが一側に偏っているかどうか、またはどの程度分散しているかを判断するのに役立ちます。データの分布が不均一な場合、分位値はデータの差をより正確に表すことができます。

ビジネスの背景

販売者が発行するクーポンの額面配布範囲は [1, 20] で、各クーポンには対応する額面がマークされます。クーポンのコストを正確に管理するには、クーポンの発行状況をリアルタイムで把握し、より正確な評価を行う必要があります。クーポン発行量、平均クーポン発行量、および発行量の分位値をリアルタイムに監視することにより(さまざまな間隔での平均クーポン発行量を把握)、クーポンの発行状況をより明確に把握できます。クーポン。

現在、企業は次の指標を整理し、必要な学生からデータを必要としています。すべての指標は統計的な粒度として分に基づいています:

発行量: 発行されたクーポンの総量

クーポン発行量 平均: 発行総額 / 発行総額

クーポン発行金額 0.1 パーセンタイル平均: 1 分あたりのクーポン発行量を額面ごとにソートし、額面の大きい順に並べます。 1 分あたりのクーポン発行量を計算します。クーポンの上位 10% の平均値 (たとえば、クーポン金額の順序は 10、9、8、8、6、5、4、4 です) , 2, 2 の場合、0.1 分位の平均値は 10]

発行されたクーポン金額の 0.2 パーセンタイル平均: 1 分あたりに発行されたクーポンの量は、額面ごとに並べ替えられ、大きい額面が前に、小さい額面が前に表示されます。 1 分あたりのクーポン発行額の上位 20% を計算します。クーポンの平均値 (たとえば、発行されたクーポンの額面順は 10、9、8、8、6、5、4、4、2、 2 の場合、0.2 パーセンタイルの平均値は (10 9)/2=9.5 です。]

クーポンの発行量や平均枚数などの指標は、MySQL を使用して実装できます。分位値?

思考

MySQLはsortingを実装しています

row_number() over ( partition by a1.min order by metric_value desc) as orderNum
ログイン後にコピー

metric_valueはクーポンの発行量を表しており、上記の関数によりクーポンの発行量に応じてソートすることができ、 1 分あたりのクーポン発行データは金額ソートに基づいています

MySQL は topN

SELECT * FROM sales ORDER BY amount DESC LIMIT 10;
ログイン後にコピー

を実装しています明らかに、この topN メソッドでは分ごとのソートを実現できず、上位 N% が取得されます。 N% の量を知るには、まず合計量を決定する必要があるため、最初に 1 分あたりの合計量を計算する必要があります。次に、それに N% を掛けて、N% を抽出するのに必要なデータ量を求めます。

select hour,min, count(1) as cn 
from table  
where dt=20230423 and hour=11 and min>=0 and min<=30 
group by hour,min
ログイン後にコピー

次に、統計結果に N%

select dt,a2.hour,a2.min as min,metric_value, round(cn*N%) as cn, orderNum 
from ( 
	select dt,hour,a1.min as min, 
	metric_value, row_number() over ( partition by a1.min order by metric_value desc) as orderNum 
	from table a1 
	where dt=20230423 and hour=11 and min>=0 and min<=30 
	) as a2 
inner join ( 
	select hour,min , count(1) as cn 
	from table c 
	where dt=20230423 and hour=11 and min>=0 and min<=30  
	group by hour,min ) a3
on a2.hour=a3.hour and a2.min=a3.min
ログイン後にコピー

を掛けます。このようにして、cn (分位値の計算に必要なデータの量) と orderNum (データのサイズ) を比較できます。額面に基づく現在のクーポン (ソート順のサイズ) を使用してデータの最初の N% を取得し、データのこの部分に対して平均処理を実行して分位値データを取得します。

計算ロジックを調整して融合し、次のようにパーセンタイル値の SQL を取得します。

select dt,hour,min, round(avg(metric_value)) as metric_value 
from ( 
	select dt,a2.hour,a2.min as min,metric_value, round(cn*?) as cn, orderNum 
from ( 
	select dt,hour,a1.min as min,
	metric_value, row_number() over ( partition by a1.min order by metric_value desc) as orderNum 
	from table a1 
	where dt=20230423 and hour=11 and min>=0 and min<=30 
	) as a2 
inner join ( 
	select hour,min, count(1) as cn 
	from table a1 
	where dt=20230423 and hour=11 and min>=0 and min<=30 
	) as a3
on a2.hour=a3.hour and a2.min=a3.min ) as q 
where cn>orderNum 
group by dt,hour,min 
order by dt,hour,min
ログイン後にコピー

このデータは、cn > orderNum の場合、パーセンタイル値の統計を計算できる範囲内にあります。 0.1 パーセンタイル値を計算するには、1 分あたりのクーポン発行データの最初の 10% を収集する必要があります。額面ごとに並べ替え、分ごとにグループ化した後、各レコードにはレコードのランクがマークされます。 1分あたりのクーポン発行量の合計に10%を乗じてcntを求めます。この値は、この1分間の0.1分の平均を計算するのに必要なデータ量です。cnt

  • 説明 MySQL を使用して分位値を計算する前に、分位値は常に Java プログラムを通じて毎分クーポン発行データに対してクエリされ、ソートされて計算されていました。平均、達成する。プログラムの実装に関する最大の問題は、クーポンの発行量が比較的多い場合、一定期間の分位値指標を照会する必要があり、プログラムに大きな負担がかかることです。実際、私たちの実際のビジネスでもこの問題は発生しています。 2 時間の分位値データをクエリするたびに、100 万を超えるデータが Java プログラムに読み込まれることになります。これはデータ クエリ サービスにとって非常に恐ろしいことです。この問題を解決するには、MySQL を介して分位値のクエリを実装する必要があります。

効果

プログラムは詳細データをクエリして分位値を計算します --> MySQL は分位値の直接クエリを実装します

パフォーマンス>1分から開始 --> 15秒以内; パフォーマンスが大幅に向上

以上がMySQL で分位値をクエリする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

MySQL:簡単な学習のためのシンプルな概念 MySQL:簡単な学習のためのシンプルな概念 Apr 10, 2025 am 09:29 AM

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

phpmyadminを開く方法 phpmyadminを開く方法 Apr 10, 2025 pm 10:51 PM

次の手順でphpmyadminを開くことができます。1。ウェブサイトコントロールパネルにログインします。 2。phpmyadminアイコンを見つけてクリックします。 3。MySQL資格情報を入力します。 4.「ログイン」をクリックします。

Navicatプレミアムの作成方法 Navicatプレミアムの作成方法 Apr 09, 2025 am 07:09 AM

NAVICATプレミアムを使用してデータベースを作成します。データベースサーバーに接続し、接続パラメーターを入力します。サーバーを右クリックして、[データベースの作成]を選択します。新しいデータベースの名前と指定された文字セットと照合を入力します。新しいデータベースに接続し、オブジェクトブラウザにテーブルを作成します。テーブルを右クリックして、データを挿入してデータを挿入します。

NavicatでMySQLへの新しい接続を作成する方法 NavicatでMySQLへの新しい接続を作成する方法 Apr 09, 2025 am 07:21 AM

手順に従って、NAVICATで新しいMySQL接続を作成できます。アプリケーションを開き、新しい接続(CTRL N)を選択します。接続タイプとして「mysql」を選択します。ホスト名/IPアドレス、ポート、ユーザー名、およびパスワードを入力します。 (オプション)Advanced Optionsを構成します。接続を保存して、接続名を入力します。

MySQLおよびSQL:開発者にとって不可欠なスキル MySQLおよびSQL:開発者にとって不可欠なスキル Apr 10, 2025 am 09:30 AM

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。

単一のスレッドレディスの使用方法 単一のスレッドレディスの使用方法 Apr 10, 2025 pm 07:12 PM

Redisは、単一のスレッドアーキテクチャを使用して、高性能、シンプルさ、一貫性を提供します。 I/Oマルチプレックス、イベントループ、ノンブロッキングI/O、共有メモリを使用して同時性を向上させますが、並行性の制限、単一の障害、および書き込み集約型のワークロードには適していません。

SQLが行を削除した後にデータを回復する方法 SQLが行を削除した後にデータを回復する方法 Apr 09, 2025 pm 12:21 PM

データベースから直接削除された行を直接回復することは、バックアップまたはトランザクションロールバックメカニズムがない限り、通常不可能です。キーポイント:トランザクションロールバック:トランザクションがデータの回復にコミットする前にロールバックを実行します。バックアップ:データベースの定期的なバックアップを使用して、データをすばやく復元できます。データベーススナップショット:データベースの読み取り専用コピーを作成し、データが誤って削除された後にデータを復元できます。削除ステートメントを使用して注意してください:誤って削除されないように条件を慎重に確認してください。 WHERE句を使用します:削除するデータを明示的に指定します。テスト環境を使用:削除操作を実行する前にテストします。

MySQL:世界で最も人気のあるデータベースの紹介 MySQL:世界で最も人気のあるデータベースの紹介 Apr 12, 2025 am 12:18 AM

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

See all articles